
 
 
 
 
 
Digital   Design   2:   Final   Project   Report  
 
Abhishek   Damle  
Charles   Hall  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Table   of   Contents  
System   Block   Diagrams 2  

Project   File   Structure 7  

Technical   Discussions 7  
Mixed   Clock   Domain   Design 8  
Sprite   Generation 8  
Memory   Usage   Optimization 9  

User   Manual 9  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1  



System   Block   Diagrams  

   
Figure   1:   High   level   system   block   diagram   
 
Table   1:   Description   of   high   level   modules   signals  
 

Modules  

VGA  Draws   the   tic   tac   toe   board   on   the   VGA   monitor  

Game   Controller  Contains   the   logic   for   the   tic   tac   toe   game  

Player   Input  Moves   selected   position   based   on   keyboard   input   and   allows  
player   to   select   a   position  

Signals  

board   state  Stores   whether   each   of   the   nine   places   on   the   tic   tac   toe   board  
are   free,   occupied   by   a   circle,   or   occupied   by   a   cross  

win   state  Stores   whether   the   game   is   in   progress,   has   been   tied,   has  
been   won   by   the   computer,   or   has   been   won   by   the   player  

select   state  Stores   which   of   the   nine   places   has   been   selected   by   the  
player(used   for   debugging   purposes   as   multiple   places   can   be  
selected   at   once)  

player   move  Stores   which   of   the   nine   places   has   been   selected   by   the   player  

player   move   made  Pulses   for   1   50   MHz   clock   cycle   when   the   player   has   selected  
their   position   

2  



 
Figure   2:   Block   diagram   of   Game   Controller   module  
 
Table   2:   Description   of   Game   Controller   submodules   and   signals  

Modules  

Check   Win   Lose  Checks   whether   the   game   is   in   progress,   has   been   tied,   or   has  
been   won  

Game   Logic  FSM   that   alternates   giving   turns   to   the   player   and   AI   

AI   Logic  Chooses   the   AI’s   move  

Check   Free  Determines   whether   players   move   is   valid   

Signals  

board   state  Stores   whether   each   of   the   nine   places   on   the   tic   tac   toe   board  
are   free,   occupied   by   a   circle,   or   occupied   by   a   cross  

win   state  Stores   whether   the   game   is   in   progress,   has   been   tied,   has  
been   won   by   the   computer,   or   has   been   won   by   the   player  

AI   next   move  Stores   which   of   the   nine   places   has   been   selected   by   AI   

player   move  Stores   which   of   the   nine   places   has   been   selected   by   the   player  

player   move   made  Pulses   for   1   50   MHz   clock   cycle   when   the   player   has   selected  
their   position   

Move   is   valid  Stores   whether   the   player’s   move   is   valid  

3  



 
 

 
Figure   3:    Block   diagram   of   VGA   module  
 

4  



Table   3:   Description   of   VGA   submodules   and   signals  

Modules  

Board   Drawer  Draws   game   board   based   on   the   state   of   the   board,   which  
position   is   selected,   and   whether   the   game   has   been   won   or   not  

Color   Selector  Prioritizes   outputs   of   the   LUT’s  

Board   LUT  LUT   for   the   board  

Circle   LUT  LUT   for   circle   sprite   

Cross   LUT  LUT   for   the   cross   sprite  

Frame   LUT  LUT   for   the   frame   sprite   which   denotes   the   player’s   selected  
position  

Winner   LUT  LUT   for   the   word   “winner”  

Tie   LUT  LUT   for   the   word   “tie”  

Player   LUT  LUT   for   the   word   “player”  

Computer   LUT  LUT   for   the   word   “computer”  

Signals  

board   state  Stores   whether   each   of   the   nine   places   on   the   tic   tac   toe   board  
are   free,   occupied   by   a   circle,   or   occupied   by   a   cross  

win   state  Stores   whether   the   game   is   in   progress,   has   been   tied,   has  
been   won   by   the   computer,   or   has   been   won   by   the   player  

select   state  Stores   which   of   the   nine   places   has   been   selected   by   the   player  

circle,   cross,   frame,   winner,  
tie,   player,   and   computer  
enable  

Enables   respective   LUT  

board,   circle,   cross,   frame,  
winner,   tie,   player,   and  
computer   color   select  

Output   of   respective   LUT  

circle,   cross,   and   frame   x  
circle,   cross,   and   frame   y   

Stores   x   and   y   position   of   its   respective   sprite  

color   select   Stores   which   color   the   current   pixel   should   be  

 
 

5  



 
 
 
Figure   4:   Block   diagram   of   PlayerInput   Module  
 
Table   4:   Description   of   PlayerInput   Modules  
 

Modules  

ps2Keyboard  Outputs   the   data   read   from   the   keyboard  

edgeDetectorXD  Outputs   a   positive   signal   when   the   ENTER   
key   is   pressed.  

Board   LUT  Outputs   the   current   selected   position   based   on   the   keyData  
read   from   the   ps2Keyboard   module.  

Signals  

keyPressed  Stores   when   the   ps2Keyboard   module   
finishes   reading   in   the   8-bit   key   code   from   the   keyboard  

keyData  Stores   the   8-bit   key   code   read   in   from   the   
keyboard.  

enterDetected  Stores   when   the   ENTER   key   is   pressed   and  
the   positive   50mhz   clock   edge   is   detected.  

selectedPosition  Stores   the   player's   current   selected   position  

 
 
 
 

6  



Project   File   Structure   

 
Figure   5:   Hierarchy   of   Files  

Technical   Discussions   
 
This   project   was   an   extension   of   homework   6   that   allows   a   player   to   play   a   tic   tac   toe   game  
using   a   keyboard.   The   fundamental   additions   to   this   project   were   the   logic   for   the   tic   tac   toe  
game,   the   module   responsible   for   drawing   the   board,   and   the   module   that   reads   keyboard  
inputs   through   the   ps2   protocol.   A   block   diagram   of   the   tic   tac   toe   game   logic   is   shown   in   figure  
2   and   descriptions   of   the   modules   and   signals   from   figure   2   can   be   found   in   table   2.   The   “Game  
Logic”   module   is   responsible   for   alternating   between   the   player   and   the   AI’s   turns   and   takes  
inputs   from   purely   combinational   modules   which   determine   the   AI’s   move,   whether   the   game  
has   been   won,   and   the   player's   valid   move.   The   module   that   decides   the   AI’s   next   move   is   the  
most   complex   amongst   these   modules   and   to   simulate   an   opponent   making   “intelligent   plays”,  
the   following   criteria,   in   order   of   importance,   are   used   to   determine   the   AI’s   next   move.  

1. Does   position   result   in   3   in   a   row   for   the   AI?  
2. Does   position   block   3   in   a   row   for   the   Player?  
3. Is   the   position   the   first   free   position?  

 
The   game   board   was   drawn   through   the   “VGA”   module   which   is   an   adaptation   of   the   top   level  
module   from   homework   6.   The   block   diagram   and   descriptions   for   the   sub   modules   and   signals  
in   the   “VGA”   module   can   be   found   in   figure   3   and   table   3   respectively.   The   core   of   the   “VGA”  

7  



module   is   the   “XGA”   module   which   simply   sets   the   current   pixel’s   color   to   an   inputted   color  
value   and   outputs   the   current   pixel’s   x   and   y   position.   Like   the   ball   from   homework   6,   the   circle,  
frame,   cross,   winner,   tie,   player,   and   computer   sprites   determine   the   color   of   the   current   pixel  
based   on   their   relative   x   and   y   position   to   the   current   pixel’s   x   and   y   position   as   well   as   the  
contents   of   their   look   up   tables   which   are   implemented   as   ROM’s.   The   sprites   x,   y   positions,  
and   whether   they   are   enabled   are   determined   by   the   “Board   Drawer”   module   based   on   the  
board   state,   select   state,   and   win   state.   The   outputs   of   all   of   the   sprites   are   fed   into   the   Color  
Selector   module   which   prioritizes   them   and   selects   the   color   of   the   current   pixel.   
 
The   last   fundamental   addition   was   the   “playerInput”   module.   When   a   key   is   pressed   on   the  
keyboard,   it   will   send   an   11-bit   data   frame   to   the   FPGA.   The   frame   consists   of   a   zero   start   bit,  
8-data   bits   corresponding   to   the   key   pressed,   a   parity   bit,   and   a   stop   bit.   Once   the   start   bit   is  
detected,   the   ps2Keyboard   module   will   move   into   a   DATA   state,   where   it   reads   in   8   bits   of   data  
that   correspond   to   the   specific   key   pressed   on   the   keyboard.   
 

Mixed   Clock   Domain   Design  
 
We   had   to   implement   an   edge   detector   due   to   the   differences   between   the   main   50   MHz   clock  
and   the   100   Hz   clock   being   read   in   from   the   ps2   keyboard.   The   edgeDetectorXD   module  
ensures   that   the   keyPressed   signal   is   set   for   one   clock   cycle   on   the   50   MHz   clock   instead   of   the  
slower   100   hz   clock   that   is   read   in   from   the   keyboard.   Through   pulsing   the   keyPressedsignal   for  
1   50   MHz   clock   cycle   and   holding   the   hex   code   for   the   key   entered   in   a   register,   the  
“ps2Keyboard”   module   is   able   reliably   transmit   the   key   pressed   to   the   rest   of   the   “playerInput”  
module   which   is   clocked   at   50   MHz.   
We   didn’t   have   to   worry   about   the   mixed   clock   between   the   50   mhz   clock   and   the   75mhz   VGA  
clock.   This   is   because   the   game   state   is   stored   and   changed   in   one   module,   and   the   VGA  
module   is   only   concerned   about   reading   in   the   updated   data   from   that   module   and   the   game   is  
constant   for   long   periods   of   time.   .  

Sprite   Generation  
Since   the   ROM   depth   for   the   pictorial   sprites   is   65536   while   the   depth   for   the   text   sprites   is  
6144,   an   automated   method   of   setting   the   ROM   contents   needed   to   be   developed.   In   order   to  
generate   the   ROM   contents,   a   sprite   was   first   drawn   on   a   256   x   256   or   256   x   26   pixel   canvas.  
This   sprites   were   then   converted   to   bmp   images   and   a   program   called   “lcd-image-convertor”  
was   used   to   get   the   color   values   for   each   of   the   pixels   in   the   sprites.   These   color   values   were  
then   formatted   by   the   “lut_gen.cpp”   program   into   the   ”.mif”   format   which   is   used   to   program  
ROM.   This   process   allowed   for   rapidly   converting   sprites   in   the   .bmp   image   format   to   ROM  
contents   and   greatly   reduced   the   amount   of   time   and   effort   taken   to   program   the   ROM.   

8  



Memory   Usage   Optimization   
A   naive   approach   would   have   been   to   have   instances   for   the   look   up   tables   for   the   circle,   cross,  
and   frame   sprites   for   each   of   the   nine   positions   which   get   enabled   and   disabled   based   on   the  
state   of   the   game.   In   order   to   optimize   the   memory   usage,   we   employed   a   method   that   allowed  
us   to   only   use   only   one   instance   of   the   look   up   table   for   the   circle,   cross,   and   frame   sprites.   In  
our   method,   we   split   the   768x768   pixel,   3x3   game   board   into   9   individual   256x256   pixel   blocks.  
We   then   check   to   see   which   of   the   9   blocks   the   current   pixel   position   of   the   “XGA”   module   lies  
in.   Based   on   this,   we   set   the   x   and   y   positions   of   the   sprites   at   one   of   the   correct   9   positions.   
 
Figure   6   shows   an   example   game   board   with   circle   images.   Utilizing   our   method,   these   images  
can   be   shown   using   a   single   sprite   and   look   up   table   and   table   5   shows   the   x   and   y   positions   of  
the   single   circle   sprite   for   each   current   x   and   y   pixel   value.   

 
Figure   6:   Example   game   board  
 
Table   5:   X   and   Y   positions   given   to   a   single   sprite   to   display   image   from   figure   6  

 Pixel’s   x   position  

0-255  256-511  512-767  

 
Pixel’s   y  
position  

0-255  0,0  disabled  disabled  

256-511  disabled  256,256  disabled  

512-767  disabled  disabled  disabled  

User   Manual   
When   you   start   the   game,   the   top   left   square   on   the   tic-tac-toe   board   should   be   highlighted.   You  
can   move   the   yellow   square   using   the    A   (Left),   S   (Down),   W   (Up),   D(Right)    keys   on   the  
keyboard.   When   you   want   to   confirm   your   position   selection,   press   the    ENTER    key.   A   blue   ‘O’  
should   appear   in   the   selected   position.   Then,   the   computer   should   select   a   position,   which   will  

9  



contain   a   red   ‘X’.   You   can   select   another   position   as   long   as   the   position   isn’t   already   occupied  
by   an   ‘O’   or   an   ‘X’.   If   you   manage   to   get   3   ‘O’s   in   a   row,   you   win   the   game.   However,   if   the  
computer   gets   3   ‘X’s   in   a   row,   you   lose   the   game.   If   all   of   the   positions   of   the   board   are   filled,  
and   neither   the   player   nor   the   computer   has   3-in-a-row,   then   the   game   result   is   a   tie.   Whether  
you   win,   lose,   or   tie,   there   will   be   an   indicator   that   appears   on   the   right   side   of   the   screen.   To  
reset   the   game,   just   press   the    KEY0    on   the   FPGA   board.   

10  


