
Final Report

Embedded Systems Design - Fall 2019, Team 10

Members: Abhishek Damle, Chris Blackburn, Sean Gallagher, Tsheetiz Tamang

Table of Contents
Section 1: Summary 2

Section 2: Table of Requirements 2

Section 3: Incorporation of Engineering Standards 6

Section 4: Analysis of Robustness 6

Section 5: Analysis of Reliability 7

Section 6: Design Improvements 8

Section 7: Lessons Learned 9

Section 1: Summary
For our project, we designed and prototyped a “chef robot” that selects and fetches ingredients
from a pantry area. This was modelled after a 2016 Amazon Picking Challenge and simulated
some of the challenges that autonomous picking robots face in a warehouse. The components of
the robot were a robotic arm, a sensor module for the robot arm, a three omnidirectional wheeled
rover, and the sensor module of the rover. Each of these four components were controlled by Ti
CC3220SF microcontrollers running FreeRTOS and used the MQTT protocol to communicate
with each other.

The role of the robot arm and its sensor module was to choose the right ingredients based on a
recipe and place them onto the rover. The arm achieved this by picking up each ingredient, one by
one, and presenting it to the arm sensor module. If the arm sensor module detected the ingredient
was a part of the current recipe, the arm placed the ingredient into the rover. Otherwise, the arm
placed the ingredient back in its original location.

The role of the rover and its sensor module was to navigate between the pantry and customer. The
rover sensor module provided the rover with the heading of the markers in the two areas as well
as the distance in front of the rover. A navigation algorithm used this information to direct the
rover to the two areas.

Section 2: Table of Requirements

Number and
Category

Requirement Statement Satis
fied

Explanation

1.
Functional

The System shall consist of
1.1 the kitchen
1.2 a robot arm
1.3 the chef rover
1.4 the server and GUI

The kitchen consists of a pot placed some distance
away from a shelf of ingredients.The overall
objective is for the chef rover to retrieve
ingredients from the shelf and bring them to the
pot. The robot arm will be located near the shelf
and shall place ingredients from the shelf onto the
chef rover. Upon being loaded with ingredients,
the chef rover must navigate to the pot on the
other side of the kitchen.

yes The chef rover was able to
fetch a series of varied
ingredients in multiple
consecutive runs.

1.1 kitchen This is the environment of the project. The
kitchen, as shown in figure 1, consists of the

yes We constructed the
environment to meet these
specifications. Since the

pantry and stove areas. Two colored blocks will be
used to designate the loading zone and the pot.

The stove area will consist of a stationary but
arbitrarily placed pot where the ingredients must
be brought. Meanwhile, the pantry area will house
the ingredients, the robot arm, and a marker. The
chef rover will be placed between the pot and the
pantry, but it will be in-line with them (i.e. it
should have the opportunity to move straight on to
the pantry loading zone.

The kitchen will be at least three times as wide as
the chef rover, and five times as long.

rover did not have
knowledge of the placement
of the markers, their
placements were arbitrary.

1.2 robot
arm

Once the chef rover arrives at the loading zone,
the robot arm must retrieve the ingredients
required by a specified recipe and place them on
the chef rover.

The ingredients will be placed next to arm and will
wait for the recipe. Once it gets the ingredients
needed it will start picking up the blocks and
check if it is required, and if it is then the robot
arm will place the ingredient onto the rover which
will be in the loading zone. If the ingredient is not
right then it will place it back in its original
position.

Successful operation will be determined through

1. The robot arm’s ability to select the
correct ingredients

2. The robot arm’s ability to place the
ingredients into the chef rover

yes The arm successfully placed
the correct ingredients from
shelf into the rover,
rejecting the ingredients not
in the recipe.

1.3 chef
rover

Rover 2.5 must be used to fulfil the role of the
chef rover. The chef rover must navigate between
pot and loading zone. The chef rover must be able
to account for the arbitrary placement of the pot.

Successful operation will determined through

1. The chef rover’s ability to place itself in
the loading zone such that the arm can
place ingredients on to the rover without
dropping them

2. The chef rover’s ability to navigate
between the loading zone and the stove
area

yes The rover was able to
navigate between the two
markers without knowing
their positions beforehand.
The rover also stopped
correctly in the loading
zone such that the arm
never missed placing an
ingredient in the rover.

1.5 the
server and
GUI

All components must communicate with the server
and no communication amongst the individual
components is permitted. The server shall be
responsible for coordinating all of the individual
components to place ingredients from a user
specified recipe into the pot. A GUI as shown in
figure 2 must allow a user to select between
existing recipes.

Successful operation will be determined through

1. The server’s ability to coordinate the
components to reach the final goal of
returning the requested ingredients to the
pot

2. The GUI’s ease of use and functionality

yes The GUI was used to
initiate the demo and the
rover correctly fetched the
ingredients that were
requested by the user
through the GUI.

2. Cost

2.1 The total costs excluding the provided materials
must not exceed $400

yes The total cost of all of the
parts was $261.30

2.2 The robot arm must cost less than $100 yes The arm cost $44.86

3. Schedule

3.1 - 3.13 Course Imposed Deadlines yes Submitted before deadline

4. Standards

4.1 The system must use common standards such as
UART, SPI, and I2C to interact with sensors.

yes Only common standards
were used to interact with
sensors.

4.2 Sensor data will be collected via interrupts on the
microcontroller boards.

yes All sensor data was
collected via interrupts
except for the sensors that
had UART and analog
interfaces. Due to the
limitations of the drivers,
UART and ADC interfaces
used blocking calls meeting
the specifications from the
help document.

4.3 The system must use MQTT to communicate with
the server using JSON payloads.

yes The system uses MQTT to
communicate with the
server and uses JSON
payloads.

4.4 Each microcontroller board will use FreeRTOS as
the scheduler and tasking agent to carry out
commands through each robotic component.

yes Each microcontroller board
uses FreeRTOS as the
scheduler and tasking agent

4.5 Message queues will be used to communicate
between tasks on each microcontroller board,
whether that be in communication with the server
or with a sensor on the board.

yes Only message queues were
used to communicate
between tasks

5. Ethical
and
Professional

5.1 Must comply with intellectual property laws and
policies/guidelines.

Specifically, the license terms of each IP used
must be met.

yes Complied with intellectual
property laws and
policies/guidelines of all
components used in the
system.

5.2 The system and team members must comply with
IEEE Code of Ethics - specifically points
3,6,7,8,9,10

yes IEEE code of ethics were
followed

6. Public
health,
safety, and
welfare

6.1 The ingredients must never make contact with the
floor.

yes The ingredients were never
dropped to the ground
during the multiple runs
performed in the final demo

9. Social

9.1 Must employ a simple UI that can be used quickly
by both the elderly and restaurant employees.

yes The UI was simple

9.1 The UI must display the progress of the ingredient
collection.

no Implementation flaw,
although the information
was available to the server,
the GUI doesn't display the
progress.

12. Basic
Code
Requiremen
ts

12.1 All of the code must be unit tested and must be
written in such a way as to facilitate unit testing

yes All components were
independent and could be
independently tested

12.2 The code size must not be excessive. Each
individual contribution must be less than 500 lines
and no C function may be more than 25 lines.

no Implementation flaw, we
did not make sure all the
code size was not excessive

12.4 The code must follow general good programming
guidelines such as no global variables, descriptive
variable and function names, etc...

yes Good programming
guidelines were followed

Section 3: Incorporation of Engineering Standards

The main engineering standards used for the system included SPI, UART, MQTT, and JSON.
SPI was used to interface with the rover motor encoders as well as Pixy2. UART was used to
interface with the rover motors themselves and for debugging purposes. Since the sensors and
motors used well developed serial communication standards, we did not have to develop
software for these components and could treat them as black boxes. This greatly cut down on
the complexity of the project while increasing reliability.

The system also used the MQTT standard to transmit data between the boards and the JSON
standard to encode the data. Using well developed standards greatly reduced our development
time and increased reliability. Conforming to a commonly used standard also meant that the
system was very adaptable and additional components could be incorporated by a third party
unaware of the specifics of our work.

Section 4: Analysis of Robustness
Our system design robustness can be separated into three main categories. First, the system’s
physical robustness will be considered. Then, the system’s software robustness will be
considered. Finally, the system will be examined once more from the viewpoint of
hardware/software integration to determine if this increases, decreases, or has no effect at all on
overall system robustness.

The two Pixy Cams and the IR sensor used in this system are inherently robust from a physical
standpoint. If all connections and cables are correct and undamaged, then the sensor hardware
should perform in all environments, within reason. Similar reasoning can also be applied to both
the arm and the rover platform. If all hardware is undamaged and set up according to appropriate
specifications, these two devices should perform in all environments, within reason. For instance,
test cases 1 and 2 for the arm are basic joint movement and grip strength. These two test cases
always pass in different environments assuming default specifications are met (i.e. the arm joints
are not overtightened and the claw servo is not applying an excessive amount of force, causing a
stall). For the rover, test cases 1-5 are met in the physical sense simply by the rover being able to
move forward, backward, left, right, clockwise, and counterclockwise.

From a software standpoint, the pixy cams and the IR sensor are fairly robust. Once trained on a
certain color, the pixy cams are very accurate with no false positives. The rover sensors were
able to find the loading and kitchen markers and stop the correct distance away from the marker.
However, issues begin to arise if lighting changes in the same environment or the pixy cams are
moved to a new environment without retraining. In this case, the pixy cams often did not register
the required color, or false positives occur. Varying lighting can also interfere with the IR sensor;
however, the IR sensor was more consistent during our testing. The rover is quite robust from a
software standpoint. It simply follows direction from the server and corrects in real time
according to instructions from the rover sensors or its PID algorithm. The relative speed and PID
test cases are easily met in all environments. Similarly, the arm is also quite robust. It receives
servo positions from the server and uses a motion smoothing algorithm that is timer-based to step
to the arm through positions leading to the new position. This allows the arm to easily pass the
test cases for retrieving each ingredient and returning incorrect ingredients to their original
locations. It also allows the arm to easily pass the test case of dropping the correct ingredients
onto the rover. These positions are hard-coded into the Raspberry Pi server so an environment
change/stress would not affect arm motion. There is also no ability to feed incorrect inputs to the
arm.

From a hardware/software integration level, this system is very robust. Excluding the possibility
of the pixy cams having issues in different lighting, there are no parts of the system that would
not work in multiple different environments. There is only one input to the overall system via a
GUI with a dropdown list. There are 7 recipe options and an “Execute” button. All that happens
when “Execute” is pressed is a state change within the software and an update to the recipe
string. Thus, this button can be pressed at almost any time and all it would do is place the system
back in its initial state. This would only be a problem if the button was pressed during or after the
loading process. Otherwise, there is no other way to provide faulty input and stress to the system.
Due to the system specifications that have been laid out, the playing field will always be flat and
clear of obstacles. Thus, the rover and its sensors will not have trouble. Therefore, all four
system requirements: rover departure from kitchen, rover arrival at loading zone, arm loading,
and rover return, are easily met no matter the stress or invalid inputs except for the specific
exceptions mentioned above.

The limitations of our system design are differing lighting that can affect the sensors and invalid
input from the GUI during the loading/return stage. All other stress possibilities observed during
testing were handled flawlessly by the system. Sometimes the rover took a while to arrive at the
loading zone due to the sensor-based movement algorithm, but it always arrived successfully. If
timing was a strict constraint, then this might cause issues but this will be further discussed in the
reliability section below.

Section 5: Analysis of Reliability

We have four different components that make up our overall design. The four components fell
into two categories: arm and rover. For the rover we tested the rover motors, rover sensor, arm

motor and arm sensor. As stated throughout this report, we wanted the rover to act as a “chef”
rover, starting at an arbitrary position and finding its way to the loading zone. To achieve this we
needed to make sure that the rover could move, use its sensors to find the loading zone, etc. To
make sure that the rover could effective execute its task we tested the movement capabilities
fully. We tested the rover to make sure that it could take in a directional angle, rotation direction
and speed in several test cases. The rover never had any trouble moving throughout the demos,
once it found the loading zone it was able to move left, right, backwards, and forward towards
the zone.

The rover also had an IR distance sensor and Pixy2 cam which was used to locate the loading
zone and destination zone. We had problems with the Pixy2 because it would not properly detect
certain colors. To overcome this we trained the Pixy2 to detect darker colors. After solving this
problem, the Pixy2 never had a problem detecting the loading zone again. The IR distance sensor
had to be adjusted so that the arm could drop the ingredient into the loading mechanism on top of
the rover. After these minor adjustments were made to the distance sensor and Pixy2, the rover
never had problems detecting the loading zone and stopping at a distance where the arm could
properly drop the ingredients off. Moving onto the next component, the arm was very reliable.

Since there was a budget on the arms, we had to settle on a cheap arm that could meet our
requirements. This arm did not have many problems, but was a little jittery but was solved when
we tweaked the voltage. The main purpose of the arm was to pick up the ingredients and show it
to the Pixy2. If it is the right ingredient then the arm would move to the loading position and
drop the ingredient into the rover, and if the ingredient was incorrect, it would return the block
into its original position. A lot of testing was done to make sure that each movement was
smooth, the claw was strong enough to hold the blocks, etc. The sensor that was used for the arm
was also a Pixy2, but instead of returning the x, y, height, and width, we just wanted the color
signature of the block. Since there were only 3 colors set (Red, Blue, and Green), the Pixy2 did
not have any trouble detecting the block. After we set the color signatures in PixyMon, the Pixy2
did not have trouble detecting what ingredient was being presented, allowing us to successfully
execute the recipe we wanted.

To tie all of the components together, we created a GUI that would allow the user to select the
recipe they wanted to execute the process. We never ran into any problems with the GUI and
turned out to be a very creative way of tying all the parts together. Overall, we used the GUI to
test all four different components and, during our final demonstration, we were successfully able
to run 4 different recipes without any problems.

Section 6: Design Improvements

The main thing we were lacking was sensing capabilities (primarily due to poor initial planning).
Had we included more sensors into our system, the rover would have been able to use its
complex movement capabilities, and the arm could have moved more organically.

With our current design, actuators were very static. The arm cycled through predefined complex
motions, and would choose which set of motions to take depending on the state of the system. It
needed to grab a block, show it to the pixycam2, then either put the block back, or dump it into
the rover. To improve movement, we could have added a short-range distance sensor onto the
arm and mounted the pixycam2 for the arm such that it oversees all the arm’s movement. With
that, we could have implemented a scanning search for ingredients (colored blocks). Even
sticking with the existing movement, a short-range distance sensor could have verified
something was in the expected position as opposed to us blindly grabbing at what we expect to
be there.

As for the rover, we overestimated the pixycam2’s capability. Come to find, it’s not extremely
reliable and fails unless we are put into the conditions we trained it under. And, without
supplementary sensors, system actuation is limited. Adding additional distance sensors would
have allowed us to better orient the rover. Specifically, two distance sensors on each side of the
rover would have allowed us to create a better model of the rover’s surroundings and allowed us
to make the rover parallel with any object in its way (if two sensors in the same area have similar
readings, we are parallel). With that, we could move omnidirectionally.

Adding another pixycam2 for stereo-vision could have produced a desirable result, but again, the
pixycam2 isn’t very reliable. We believe that’s from the cheap camera module used in the
pixycam2. It can’t focus like the pixycam1 could, and doesn’t perform well even in slight
changes in lighting.

Section 7: Lessons Learned
One thing we didn’t do such a good job on was planning out what kind of sensing we’d need. At
the beginning of the semester, we had some grandiose idea of what we wanted our final
implementation to look like. I’m certain everyone went through something similar. At the same
time, we overestimated the capabilities of certain parts of the project. For example, we relied on
only two sensors for the rover: a pixycam2 for general vision sense, and a distance sensor more
easily add depth to the pixycam2’s sensing.

Having done that, we were extremely limited when trying to join each component (namely the
rover and rover sensors). Originally, we wanted to be able to navigate much more complicated
arenas with obstacles, but with only the pixycam2 and the distance sensor, our sensing
capabilities were very one-dimensional. That kept us from using the full capabilities of the
rover’s complex movement. That is, instead of using the rover’s omnidirectional movement, we
were limited to rotating and moving forwards.

With computer vision, it could have been possible to setup the arena in such a way to determine
the rover’s orientation, but again, without proper planning and overestimation of the pixycam2’s
immediate capabilities, we were left shorthanded.

The main lesson learned here is to use one or two more sensors than you think you’ll need, or to
at least iron out details of movement and sensing without relying on one main sensor. Even with
one extra distance sensor, we could have created a way to make the rover parallel with the
loading zones as opposed to limiting its movement.

Additionally, the pixycam2 has trouble detecting learned colors even in slight changes of
lighting. Earlier on, we were using a particular shade of light green. With that color, it’s almost
like the pixycam2 would untrain itself. Come to find, the shade of green was just too reflective
for the camera to recognize consistently.

Again, the lesson learned here is to not overestimate a single sensor’s capability and to think
more critically about what sensing you will need to help any actuators in the system move.

Beyond that, we learned to not underestimate creating a robust, responsive component. That is,
it’s easier said than done to make a component send and receive messages at high frequencies.
The faster we can receive positional data from the rover sensors, the faster the rover can move.
It’s worth putting time into optimizing each component to be as fast and efficient as possible.

	Section 1: Summary
	Section 2: Table of Requirements
	Section 3: Incorporation of Engineering Standards
	Section 4: Analysis of Robustness
	Section 5: Analysis of Reliability
	Section 6: Design Improvements
	Section 7: Lessons Learned

