

Max-flow Min-cut Graph Based Image Segmentation
Abhishek Damle

Electical Engineering
Virginia Tech

Blacksburg, Virginia 24060
Email: adamle@vt.edu

Cody Crofford
Computer Engineering

Virginia Tech
Blacksburg, Virginia 24060

Email: ccody7@vt.edu

Abstract: Image Segmentation is a process used for dividing
images into different regions to allow for simplification of image
analysis techniques. We formulate image segmentation as a max-
flow, min-cut problem and develop a graph cut based method of
interactive image segmentation that segments the foreground and
background from images. The performance of our method is
evaluated using a subset of images from the Berkeley
Segmentation Dataset and we track the performance of our
method with respect to the number of prelabelled pixels. We find
that the performance of our method is dependent on the
probability and spatial distributions of the pixels in the
foreground and background of an image and suggest ways to
further improve the performance of our method.

Index terms: Segmentation, Graph, minimum-cut, maxflow

I. INTRODUCTION

Image Segmentation is a process of dividing an image into
different regions based on the characteristics of the pixels in the
image[1]. It can be used to partition an image’s background and
foreground or to determine object boundaries within an image.
This simplification of images, through segmentation, allows the
analysis of areas of interest for applications such as medical
imaging diagnosis or object detection for self-driving vehicles.

Interactive segmentation is the process of partitioning
images where some pixels and the segments they belong to, have
been identified beforehand. These pixels are then segmented
into their prelabelled segments and act as hard constraints that
allow a user to provide clues on what they want to segment [2].
This characteristic makes interactive segmentation ideal for
applications where human guidance is available or preferred to
help segment an image such as photo editing and medical image
segmentation.

Separating Images by contextual regions such as background
and foreground can be performed with clustering or Graph-
based segmentation approaches. Segmentation by clustering is
done by clustering pixels based on selected pixel features such
as intensity, color, and texture. While this method is simple, it
has the drawback of being subjective to initial settings for cluster
centers, and being highly sensitive to outliers.

Graph based segmentation methods are executed by
converting the pixels in an image to fully connected graphs that
perform segmentation through finding the maximum-flow
minimum-cut of the graph. Although these methods are
computationally complex, they have the advantage of not
requiring training.

II. PROBLEM FORMULATION

To formulate image segmentation as an optimization
problem, we consider a graph representation, G = (V,E), of an

image. In the graph representation, the vertices, V, represent the
pixels while the edges, E, represent neighboring pairs of pixels.
Each pixel i in the graph also has a probability 𝑎𝑖 and 𝑏𝑖 that it
belongs to the foreground or background, respectively. Next, we
introduce a separation penalty, 𝑝

𝑖𝑗
, that makes the segment

boundaries smoother by penalizing neighboring pixels i and j for
being placed in different segments. Considering 𝑎𝑖, 𝑏𝑖, and 𝑝

𝑖𝑗
 ,

the image segmentation problem can be formulated as finding a
partition (A, B) that splits the pixels into foreground and
background sets respectively, such that the objective function,
𝑞(𝐴, 𝐵), as shown below, is maximized[3].

𝑞(𝐴, 𝐵) = ∑ 𝑎௜௜∈஺ + ∑ 𝑏௝௝∈஻ − ∑ 𝑝௜௝ (௜,௝)∈ா
|஺∩{௜,௝}|ୀଵ

 (1)

A. Formulation as a Minimum-cut Problem

The image segmentation problem can be equated to a
minimum-cut problem. The original objective function can be
transformed from a maximization function to a minimization
function, as shown below.

𝑞(𝐴, 𝐵) = ∑ 𝑎௜௜∈஺ + ∑ 𝑏௝௝∈஻ − ∑ 𝑝௜௝(௜,௝)∈ா
|஺∩{௜,௝}|ୀଵ

 (2)

𝑞(𝐴, 𝐵) = ∑ 𝑎௜ + 𝑏௜௜ − ∑ 𝑏௜௜∈஺ − ∑ 𝑎௝௝∈஻ − ∑ 𝑝௜௝(௜,௝)∈ா
|஺∩{௜,௝}|ୀଵ

(3)

thus maximizing 𝑞(𝐴, 𝐵)is equivalent to minimizing 𝑞′(𝐴, 𝐵),

𝑞′(𝐴, 𝐵) = ∑ 𝑏௜௜∈஺ + ∑ 𝑎௝௝∈஻ + ∑ 𝑝௜௝(௜,௝)∈ா
|஺∩{௜,௝}|ୀଵ

 (4)

A source node (s) and a sink node (t) can then be added to

the original graph to represent the foreground and background
regions of the image, respectively. All other nodes in the graph
are connected to the source and sink. 𝑎 𝑖 and 𝑏𝑖 , then represent
the capacities of the edges between the nodes and source and
sink respectively. Lastly, all undirected edges between pairs of
nodes are replaced with two directed edges with opposite
directions.

Fig. 1. Resulting directed graph with addition of source (s) and sink (t) nodes.
[9]

The capacity of the s-t cut, 𝑐(𝐴, 𝐵), is defined below and
consists of three terms. The K and L terms account for cuts to
edges connecting the source and sink nodes respectively, to
other nodes. Meanwhile, the M term accounts for cuts to edges
that connect neighboring pixels.

𝑐(𝐴, 𝐵) = 𝐾 + 𝐿 + 𝑀,

 𝐾 = ∑ 𝑏௜௜∈஺ , 𝐿 = ∑ 𝑎௝௝∈஻ , 𝑀 = ∑ 𝑝௜௝(௜,௝)∈ா
|஺∩{௜,௝}|ୀଵ

 (5)

Since c(A, B) is equivalent to q’(A, B), the image
segmentation problem can be solved through minimizing c(A,
B) by finding the minimum-cut that separates the source and
sink.

III. METHODS

Since image segmentation has been posed as a minimum-cut
problem, it can be solved through well-established optimization
algorithms utilizing the max-flow min-cut theorem. In order to
use this method, the image is first preprocessed and converted
to a graph.

A. Preprocessing

The first step in converting the image to a graph was
transforming it from RGB to grayscale. This step, while not
strictly necessary, helped simplify the conversion to a graph.
The cvtColor() function from the OpenCV python library maps
red, green, and blue pixel values to a single intensity value and
was used to transform the input RGB image to grayscale. The
equation used for the mapping is shown below [4].

𝐼 = 0.299 × 𝑅 + 0.587 × 𝐺 + 0.114 × 𝐵 (5)
In the preprocessing stage, the foreground and background

pixels were also manually selected. This was done iteratively
in three stages with increasing coverage so that the
performance of our method could be tracked with respect to
the number of pixels manually prelabelled. The ranges of
coverages of the manual selections as percents of the entire
image are shown in table 1.

TABLE I. COVERAGE OF THE MANUAL SELECTIONS AS PERCENT OF
THE ENTIRE IMAGE

Amount of Prelabelled Pixels Range of Coverage
Minimal .36% - .74%
Moderate 1.70% - 3.61%
High 17.50% - 39.68%

B. Source and Sing Edge Capacities

The capacities of the edges between the nodes and the
source and sink represent the probability that the node belongs
in the foreground or background segment. These probabilities
were estimated from probability density functions based on the
labeled background and foreground nodes. As suggested by [3],
the capacities of the edges were calculated using equations 6
and 7, as shown below, where 𝑓

𝐴
 and 𝑓

𝐵
 are the gaussian

distributions generated from the labeled foreground and
background nodes.

𝑎𝑖 = − ln ቀ𝑓
𝐵

(𝐼𝑖)ቁ (6)

𝑏𝑖 = − ln ቀ𝑓
𝐴

(𝐼𝑖)ቁ (7)

 The labeled background, and foreground nodes were
assigned maximum sink, and source edge capacities to force the
graph cut algorithm to categorize the prelabelled pixels in the
correct segment. These maximum capacity values were
calculated based on the set of 𝑎𝑖 and 𝑏𝑖 for all the pixels in the
image.

C. Neighboring Node Edge Capacities

The edge capacity of neighboring nodes is related to the
similarity of their intensity values. The equation of the edge
capacity of neighboring nodes is given by equation (8) where the
σ scales the penalization term ൫𝐼௜ − 𝐼௝൯.

𝑝
𝑖𝑗

= exp ൬−
(𝐼𝑖−𝐼𝑗)2

2𝜎2 ൰ (8)

Using the resulting graph obtained from the image, and the
capacities for our nodes and edges, we calculated the minimum
cut of the directed graph.

D. Finding the Minimum Cut

The NetworkX python library was used to find the
maximum flow of the image graph. The NetworkX library
provides several algorithms for finding the maximum flow of a
graph including Edmonds Karp, Preflow Push, and Shortest
Augmenting Path [6]. The time complexity of these algorithms,
given the number of pixels, 𝑝, in a graph representation of an
image is given in table 2.

TABLE II. TIME COMPLEXITY OF MAXIMUM FLOW ALGORITHMS FROM
THE NETWORKX LIBRARY.

Algorithm Time Complexity
Edmonds Karp 𝑂(𝑝ଷ)
Preflow Push 𝑂(𝑝ଶ.ହ)
Shortest Augmenting Path 𝑂(𝑝ଷ)

 The Preflow Push algorithm for finding the maximum flow
was used in this work since it has the smallest time complexity
given the number of pixels in an image.

Lastly, the nodes in the graph were partitioned by cutting

the saturated edges from the residual graph of the maximum
flow graph [7].

IV. PERFORMANCE EVALUATION

Once the image was segmented, the performance of the
proposed method was evaluated by comparing the method’s
output with the ground truth for a set of images. The intersection
over union (IoU) and F1 score metrics were used to measure the
performance of the proposed method.

 The IoU is a measure of overlap between the predicted
segmentation and the ground truth and is calculated using
equation (9) where A is the set of pixels in the predicted segment
and B is the set of pixels in the ground truth[5]. Equation (9)
also restates IoU in terms of true positives (TP), false positives
(FP), and false negatives (FN).

𝐼𝑜𝑈 =
|஺∩஻|

|஺⋃஻|
=

்௉

்௉ାி௉ାிே
 (9)

One key feature of the IoU metric is that the size of a
segment has no effect on its IoU score. This made the IoU metric
ideal since it provides a way to measure the performance of the
proposed method on a diverse set of images where the
foreground and background vary in size.

F1 score is another common performance metric used to
measure segmentation performance. F1 score in terms of true
positives (TP), false positives (FP), and false negatives (FN) as
well as precision (P) and recall (R) is given below.

𝐹1 = 2 ∗
௉∙ோ

௉ାோ
 =

்௉

்௉ା.ହ∙(ி௉ାி)
 (10)

Although the F1 score is very similar to IoU, it was used in
this work primarily to compare the performance of our method
to other works.

V. DATASET

A set of images from the Berkeley Segmentation dataset
were used to test and evaluate our method. This dataset contains
both grayscale and color images with accompanying hand label
segmentation labels. The dataset also has accompanying
benchmarks for different image segmentation methods that
could be used for comparison with our minimum-cut graph
segmentation method [8].

The Berkeley Segmentation contains images with a varying
number of segments and the four images with two segments
were all used to evaluate the graph-based segmentation method.
To increase the number of images used for evaluating our
segmentation method, the segments from the ground truth of 12
additional images from the Berkeley Segmentation dataset were
reduced through combining them together. The set of images

used to measure the performance of our segmentation method
are shown in figure 2.

Fig. 2. Subset of Images from the Berkeley Segmentation Dataset Used to
Evaluate Performance.

VI. RESULTS

The F1 scores of our method for various images from the
Berkeley Segmentation dataset with minimal, moderate, and
high numbers of prelabelled pixels are shown in figure 3. Figure
3 also contains the best F1 scores of other works for the images
used to evaluate our method. Figure 4 contains similar
information to figure 3 and uses IoU scores to show the
performance of our method.

Fig. 3. F1 Scores of the Max-flow Min-cut Graph Based Image Segmentation
for various images from the Berkeley Image Segmentation dataset.

Fig. 4. IoU Scores of the Max-flow Min-cut Graph Based Image Segmentation
for various images from the Berkeley Image Segmentation dataset.

Amongst the 16 images used to measure the performance of
our segmentation method, images 296059 and 42049 had the
highest average IoU, and F1 scores. Meanwhile, images 175043,
and 291000 had the lowest average IoU, and F1 scores.

Adding more prelabelled pixels generally increased the
performance of our segmentation method. However, the
performance of our segmentation method was lower for
moderate than minimal numbers of prelabelled pixels in the case
of certain images. These include images 291000, 69015,
175043, and 130026. Conversely images 101085, 163085,
296059, 3096, and 42049, saw a very small change in
segmentation performance based on the number of hand labelled
pixels.

VII. DISCUSSION

A. Performance Differences with Respect to Images

Our segmentation method had a large variance in its
performance based on the image it attempted to segment. This
was largely due to how well the image fit our assumptions for
estimating the probability that a pixel belongs to the foreground
or background in the process of calculating the source and sink
edge capacities of the graph representation of the image. Namely
that the distribution of the foreground and background are
normal and distinct from one another.

Our segmentation method was able to segment image
296059 with a high level of accuracy. The actual distributions of
the pixel values in the ground truth foreground and background
segments are shown in figure 4 as histograms. Additionally,
figure 4 also has Gaussian distributions fit over the foreground
and background distributions. Assuming that the hand labelled
pixels have the same distribution as the segments they belong to,
figure 5 shows the probability density functions used to calculate
the source and sink edge capacities in an ideal case.

Fig. 5. Distribution of Foreground and Background Pixels in Image 296059

Based on figure 5, the foreground and background pixels of
image 296059 are distributed normally and have distinct
Gaussian distributions. The probabilities that pixels belong to
the foreground, and background based on the Gaussian
distributions from figure 5 are shown as heat maps in figure 6.

The ground truth segmentation is also shown as a background in
figure 6 to help discern the location of pixels.

Fig. 6. Heatmaps of the Probability that Pixels Belong in the Foreground and
Background for Image 296059

Figure 6 confirms that, given the hand labelled pixels
accurately approximate the distributions of the segments, the
sink, and source capacities of the graph of image 296059 will
have different values for each node. This will allow our
segmentation method to accurately segment image 296059 as
confirmed by our results shown in figure 3 and 4.

Our segmentation method had difficulties segmenting image
175043 with a high level of accuracy. The distribution of pixels
in the foreground and background segments along with the
estimated normal distribution of segments is shown in figure 7.
The heat map of image 175043 based on estimated probability
density functions from figure 7 is shown in figure 8.

Fig. 7. Distribution of Foreground and Background Pixels in Image 175043

Fig. 8. Heatmaps of the Probability that Pixels Belong in the Foreground and
Background for Image 175043

Based on figure 7, even though a Gaussian distribution
matches the actual distribution of the pixels closely, the
estimated foreground and background distributions are not
distinct from one another. As shown in figure 8, this results in
pixels having similar probabilities of belonging in the
foreground, and background. Thus our segmentation method has
poor performance for image 175043 and similar images where
our assumption that the foreground and background segments
have distinct distributions is incorrect.

Our segmentation method also has low performance for
images where the distribution of the foreground and background
is not gaussian as is the case for image 130026. The distributions
of the foreground and background of image 130026 are shown
in figure 9. Since neither the foreground nor the background
distributions are normal, the standard deviations of the gaussian
distribution estimates are relatively high. This caused the pixels
to have similar low probabilities of belonging in the foreground,
and background which leads to low segmentation performance.

Fig. 9. Distribution of Foreground and Background Pixels in Image 175043

B. Performance Difference between Minimally, Moderately,
and Highly Prelabelled Images

Our segmentation method, when provided with a high
number of prelabelled pixels, produced the best output since the
probability that the distribution of the prelabelled pixels matches
the actual distributions of the foreground and background
increases with the number of prelabelled pixels.

 However, with an increase from a minimal number of
prelabelled pixels to a moderate number of prelabelled pixels,
an improvement in performance was not observed for all
images. Image 291000 of a horse is such an image where adding
more prelabelled pixels did not improve the performance of our
method. Figure 10 shows the locations of the prelabelled pixels
superimposed over image 291000. As can be observed in the
image, the foreground and background are very heterogeneous.
For example, the horse has a local dark area on its mane and a
local bright red area on its rear. Therefore, it is difficult to
replicate the distributions of the foreground and background
with prelabelled pixels that consist of groups of neighboring
pixels, leading to the observed lowered performance in
heterogeneous images.

Fig. 10. Left: minimal density image marking. Right: Moderate density image
marking.

When the features in different segments, foreground and
background, are homogenous or nearly homogeneous, the initial
selection does not have as great of an effect. An example of this
can be seen in Figure 11, with the bird on the branch against the
sky as a background. This is because there are smaller
pixel gradients with-in the foreground and background, but
significantly large one separating the segments. The boundary
penalty factor here will be more pronounced in the locations
with large pixel intensity differences.

Fig. 11. Left: Minimal density image marking. Right: Moderate density image
marking.

C. Comparison to Other Segmentation Methods

The Best Berkeley benchmark algorithms results on the
images we selected were primarily the gPb-ucm (gray), Ren et
al. NIPS2012 (gray), and xren (gray) algorithms. The “gPb-ucm
(gray)” algorithm is from the paper “Contour Detection and
Hierarchical Image Segmentation” and uses local contour
detection cues to perform global spectral clustering.[10]

The best result for our segmentation method was image
296059 of an elephant that was segmented using a high number
of prelabelled pixels. We achieved a IOU of 0.967 and an F1

Score of 0.942. The best result from the Berkeley dataset bench
marks displayed with the segmentation outline resulted in an F1
score of 0.9 through the use of Boundary Detection Benchmark:
Algorithm "gPb-ucm (gray)"[10]. The elephant image has
distinct feature characteristics on the sky, grass and elephant
regions of this image, which lead to good F1 scores in the two
techniques.

The Ren et al. NIPS2012 (gray) algorithm is introduced
in “Discriminatively Trained Sparse Code Gradients for
Contour Detection”[12]. This method uses a clustering method
to group and classify pixel neighborhoods to identify contours
in images.

 Our worst result for image 210088 of a fish in a plant with
the segmentation using a low number of prelabelled pixels. This
segmentation resulted in an IOU of 0.042 and an F1 score of
0.373. The best segmentation of this image in the Berkeley
benchmarks reported an F1 score of 0.77, through the use of the
Boundary Detection Benchmark: Algorithm "Ren et al.
NIPS2012 (gray)"[12].

In Contrast to our low F1 score for our low marking method,
our F1 score for this image on our high density marking image
resulted in an F1 of 0.838, out pperforming the boundary
detection segmentation method used in the benchmarks.

Additionally the human segmentation of this image resulted
in a F1 of 0.28. The reason for failures on this image are due to
the image being divided into fish and plant, according to the
ground truth image segmentation. However the plant and the
fish appear to both be in the focus and in the foreground of this
image.

The “xren (gray)” algorithm was introduced in “Multi-Scale
Improves Boundary Detection in Natural Images"[11]. This
method is a boundary detection technique that uses local
boundary cues like contrast, this method is effective with large
scale detection and small-scale detection, but is sensitive to
cluttered images. The boundary detection algorithm
“xren(gray)“ for image segmentation was another high
performance algorithm on the group of images we segmented.
The F1 score for xren on the image 196073 of a snake in the
sand was 0.82. With our graph-based image segmentation using
the low, medium, and high density marking methods we
achieved F1 scores of 0.7123, 0.897, and 0.927 respectively.

VIII. FUTURE WORK

A significant source of error in our method was due to
inadequately estimating the probability density functions of
foreground and background pixels. The probability density
function estimations can be improved through utilizing a series
of different probability density functions and choosing the one
that best fits the prelabeled pixels. Gaussian mixture model
probability distributions could also be explored in the case of
complex foreground and background probability distributions.
Furthermore, the estimated probability density functions could
be based on the red, blue, and green values of the pixels rather
than their grayscale values. This would decrease the chances of
the distributions of the foreground and background being similar
and would increase the segmentation performance of our
method.

Future improvements would be to replace the interactive
marking step with another method for boundary detection, such
as connected components or contour detection methods. The
graph-based method to determine segmentation boundaries
could be applied to the contour detection methods to modify the
boundaries in a way that satisfies our objective function. Image
thresholding can also be done to split the image into two groups
based on an intensity threshold. Also a k-means pixel clustering
segmentation could be used as a replacement for the image
marking, with the graph method applied to the image with the k-
means cluster assigned labels. Methods for initial foreground
and background estimations would complement our graph based
method, by improving the initial foreground and background
labels.

REFERENCES

[1] “What Is Image Segmentation?,” Image Segmentation. [Online].

Available:https://www.mathworks.com/discovery/image-
segmentation.html. [Accessed: 14-Apr-2021].

[2] Y. Y. Boykov and M. -. Jolly, "Interactive graph cuts for optimal
boundary & region segmentation of objects in N-D images," Proceedings
Eighth IEEE International Conference on Computer Vision. ICCV 2001,
Vancouver, BC, Canada, 2001, pp. 105-112 vol.1, doi:
10.1109/ICCV.2001.937505.

[3] J. Kleinberg and Tardos Éva, “Image Segmentation,” in Algorithm
design, Boston, Massachusetts: Pearson/Addison-Wesley, 2014, pp. 391–
395.

[4] “cvtColor,” Miscellaneous Image Transformations, 2019. [Online].
Available:
https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transfo
rmations.html. [Accessed: 14-Apr-2021].

[5] E. Tiu, “Metrics to Evaluate your Semantic Segmentation Model,”
Medium, 03-Oct-2020. [Online]. Available:
https://towardsdatascience.com/metrics-to-evaluate-your-semantic-
segmentation-model-6bcb99639aa2. [Accessed: 14-Apr-2021].

[6] A. Hagberg, “networkx.algorithms.flow.minimum_cut,” NetworkX
Documentation, 22-Aug-2020. [Online]. Available:
https://networkx.org/documentation/stable/reference/algorithms/generate
d/networkx.algorithms.flow.minimum_cut.html#networkx.algorithms.fl
ow.minimum_cut. [Accessed: 13-May-2021].

[7] A. Hagberg, “Source code for networkx.algorithms.flow.maxflow,”
NetworkX Source Code, 22-Aug-2020. [Online]. Available:
https://networkx.org/documentation/stable/_modules/networkx/algorith
ms/flow/maxflow.html#minimum_cut. [Accessed: 13-May-2021].

[8] P. Arbelaez, The Berkeley Segmentation Dataset and Benchmark, Jun-
2007.[Online].Available:
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench
/html/algorithms.html. [Accessed: 14-Apr-2021].

[9] Y. Boykov and V. Kolmogorov, "An experimental comparison of min-
cut/max- flow algorithms for energy minimization in vision," in IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no.
9, pp. 1124-1137, Sept. 2004, doi: 10.1109/TPAMI.2004.60

[10] Contour Detection and Hierarchical Image Segmentation.

P. Arbelaez, M. Maire, C. Fowlkes and J. Malik.
IEEE TPAMI, Vol. 33, No. 5, pp. 898-916, May 2011.

[11] Xiaofeng Ren, "Multi-Scale Improves Boundary Detection in Natural
Images", ECCV, 2008.

[12] Xiaofeng Ren and Liefeng Bo, "Discriminatively Trained Sparse Code
Gradients for Contour Detection.", NIPS 2012.

[13] https://networkx.org/documentation/stable/_modules/networkx/algorith
ms/flow/maxflow.html#minimum_cut

