

000
001
002
003

TINY REPRODUCTION: LoRA

004 **Anonymous authors**
005
006
007
008
009

Paper under double-blind review

010
011
012
013
014
015
016
017
018
019
020

ABSTRACT

021
022
023 This paper presents a reproduction study of Low-Rank Adaptation (LoRA), a
024 technique designed to adapt large pre-trained language models by injecting trainable
025 low-rank matrices into frozen layers. Using RoBERTa-base evaluated on the
026 GLUE benchmark, I verify the original authors' central claims: my implemen-
027 tation matches the performance of full fine-tuning within 2% while reducing the
028 number of trainable parameters by 99.7% and introducing zero additional infer-
029 ence latency. Beyond standard replication, I extend the analysis to profile system
030 efficiency on a smaller model architecture.
031
032033

1 INTRODUCTION

034
035
036
037
038 The paradigm of natural language processing (NLP) has shifted significantly toward large-scale pre-
039 training on general domain data followed by adaptation to downstream tasks. As models continue
040 to scale, the standard approach of full fine-tuning, which involves retraining all model parameters,
041 has become computationally prohibitive and inefficient.
042043 To address these challenges, Parameter-Efficient Fine-Tuning (PEFT) methods were developed to
044 adapt large models by updating only a small fraction of the parameters. However, prior to the intro-
045 duction of Low-Rank Adaptation (LoRA) (Hu et al., 2021), the prevailing state-of-the-art PEFT ap-
046 proaches introduced new trade-offs. Adapter layers, while parameter-efficient, insert sequential lay-
047 ers between existing model modules, inevitably introducing inference latency. Alternatively, prefix-
048 tuning optimizes continuous prompt vectors but reduces the available effective sequence length for
049 the input, thereby limiting the model's context window.
050051 In response to these limitations, LoRA is founded on the hypothesis that the change in weights
052 during model adaptation has a low "intrinsic rank". Instead of updating the full weight matrices,
053 LoRA freezes the pre-trained model weights and injects trainable low-rank decomposition matrices
054 into the Transformer layers. This architecture allows the trainable matrices to be merged with the
055 frozen weights during inference, eliminating the latency overhead associated with adapter layers
056 while preserving the model's input sequence length.
057058 This project serves as a "Tiny Reproduction" of the original LoRA paper, aiming to verify its core
059 claims regarding parameter efficiency, model performance, and inference latency. Due to the com-
060 putational constraints of directly recreating the original experiments, this study scales down the
061 experimental setup to a RoBERTa-base model evaluated on selected tasks from the GLUE bench-
062 mark.
063064 Specifically, this report seeks to validate three core results from the original study. First, I demon-
065 strate that LoRA drastically reduces the number of trainable parameters compared to full fine-tuning.
066 Second, I confirm that the method achieves performance comparable to full fine-tuning on down-
067 stream GLUE tasks. Finally, I verify that LoRA introduces zero additional inference latency com-
068 pared to the baseline model.
069070 In addition to replicating these core findings, I extend the analysis by conducting a holistic eval-
071 uation of training efficiency, focusing on two key metrics that go beyond standard performance
072 benchmarks. I examine GPU memory utilization to verify the tangible impact of improving parame-
073 ter efficiency through LoRA. Furthermore, I profile energy consumption to determine whether these
074 parameter-efficiency improvements translate into distinct energy-efficiency gains.
075

054

2 RELATED WORK

055
 056 A prominent approach to parameter-efficient transfer learning is the introduction of adapter modules
 057 (Houlsby et al., 2019). This method inserts small, trainable fully connected networks between the
 058 frozen layers of a pre-trained Transformer model. During fine-tuning, only these adapter modules
 059 are updated, while the original model parameters remain fixed. This approach significantly improves
 060 parameter efficiency; for example, adapters have achieved performance within 0.4% of full fine-
 061 tuning on the GLUE benchmark while training only 3.6% of the parameters per task. However,
 062 a primary drawback of adapter layers is the introduction of inference latency. Because adapters
 063 are additional layers processed sequentially within the network, they prevent the model from fully
 064 leveraging hardware parallelism, resulting in slower inference speeds compared to the base model.

065 An alternative lightweight adaptation method is Prefix-Tuning (Li & Liang, 2021), which focuses
 066 on optimizing the input rather than the model architecture. This technique freezes the language
 067 model parameters and optimizes a small, continuous vector called a "prefix" that is prepended to the
 068 input tokens. These prefixes act as "virtual tokens" to steer the model's generation for specific tasks.
 069 Prefix-tuning has demonstrated performance comparable to full fine-tuning with as few as 0.1% of
 070 the parameters and can outperform full fine-tuning in low-data regimes. However, its reliance on
 071 prompt tokens reduces the usable input sequence length. Because a portion of the context window
 072 is reserved for the prefix, less space is available for the actual task data, which limits the model's
 073 ability to process long sequences.

074 These methods highlight a critical trade-off in parameter-efficient fine-tuning: reducing trainable
 075 parameters often comes at the cost of either inference latency or effective context window size.

077

3 PROPOSED METHOD

079

3.1 LORA FORMULATION

081 This project implements Low-Rank Adaptation (LoRA) based on the hypothesis that the change in
 082 weights during model adaptation possesses a low "intrinsic rank" (Hu et al., 2021). In a standard
 083 neural network dense layer, a pre-trained weight matrix $W_0 \in \mathbb{R}^{d \times k}$ is typically updated via full
 084 fine-tuning such that $W = W_0 + \Delta W$. LoRA constrains this update ΔW by representing it as the
 085 product of two low-rank matrices $B \in \mathbb{R}^{d \times r}$ and $A \in \mathbb{R}^{r \times k}$, where the rank $r \ll \min(d, k)$.

086 During the training process, W_0 is frozen and receives no gradient updates. Only A and B , which
 087 have significantly fewer parameters than the original weight matrix, are treated as trainable parame-
 088 ters. The modified forward pass for an input x is expressed as:

$$090 \quad h = W_0 x + \Delta W x = W_0 x + \frac{\alpha}{r} B A x$$

092 Here, $\Delta W x$ is scaled by a factor of $\frac{\alpha}{r}$, where α is a constant in r . This scaling factor is critical for
 093 tuning efficiency since it acts as a normalization term that reduces the need to retune the learning
 094 rate when the rank r is varied.

096 To ensure the training stability of the adaptation, LoRA employs a specific initialization strategy.
 097 The matrix B is initialized to zero, while A is initialized with random values (specifically Kaiming
 098 uniform initialization in my implementation). This ensures that at the start of training, $\Delta W =$
 099 $B A = 0$, meaning the model initially behaves exactly like the pre-trained model.

100 A key advantage of this formulation is that it has no inference latency overhead since the learned
 101 matrices can be directly combined with the original weights. For deployment, LoRA computes the
 102 explicit weight matrix $W' = W_0 + \frac{\alpha}{r} B A$. Inference is then performed using W' , resulting in zero
 103 additional computational overhead compared to the base model.

104

3.2 LORA IMPLEMENTATION

105 To replicate LoRA, I implemented a custom PyTorch module, 'lora_linear', which wraps standard
 106 linear layers. The key implementation logic is summarized in Algorithm 1.

```

108 Algorithm 1 Custom torch.nn.Module class for LoRA
109
110 Require: Input  $x \in \mathbb{R}^{b \times d_{in}}$ , Weights  $W \in \mathbb{R}^{d_{out} \times d_{in}}$ , Bias  $\beta$ , Rank  $r$ , Scaling Hyperparameter  $\alpha$ 
111 1: merge_status  $\leftarrow$  False
112 2: scale  $\leftarrow \alpha/r$ 
113 3:  $A \in \mathbb{R}^{r \times d_{in}} \leftarrow \text{kaiming\_uniform}(a = \sqrt{5})$  ▷ Init A with Kaiming Uniform
114 4:  $B \in \mathbb{R}^{d_{out} \times r} \leftarrow 0$  ▷ Init B to zeros
115 5: function TOGGLEMERGE(merge)
116 6:   if merge is True then
117 7:      $W \leftarrow W + (BA) \cdot scale$ 
118 8:   else
119 9:      $W \leftarrow W - (BA) \cdot scale$ 
120 10:  end if
121 11:  merge_status  $\leftarrow$  merge
122 12: end function
123 13: function FORWARD( $x$ ) ▷ Forward pass logic
124 14:   if merge_status is True then
125 15:     return  $xW^T + \beta$ 
126 16:   else
127 17:      $out \leftarrow xW^T + \beta$ 
128 18:      $lora \leftarrow (xA^T B^T) \cdot scale$ 
129 19:     return  $out + lora$ 
20:   end if
21: end function

```

As detailed in the algorithm, the forward pass maintains two separate computational paths. The first path computes the standard linear projection using the frozen pre-trained weights (W_0). The second path computes the low-rank adaptation term. The input x is projected down to the rank dimension r by matrix A , and then projected back up to the output dimension by matrix B . These two outcomes are summed to produce the final activation.

To enable zero inference latency overhead, the implementation includes a ‘`toggle_merge`’ function. When enabled, this function performs the calculation $W_{merged} = W_{original} + (B \times A) \times \text{scale}$ and updates the layer’s weight parameter in-place. This effectively “bakes” the learned low-rank features into the standard weight matrix. The flag ‘`merged_weight`’ ensures that the expensive matrix multiplication for the LoRA path is skipped during the forward pass when weights are merged, reverting the layer to a standard linear operation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets: To validate the effectiveness of LoRA, I employ the RoBERTa-base model (125M parameters) (Liu et al., 2019). Following the “Tiny Reproductions” track guidelines, I scale down the evaluation scope to five datasets from the GLUE benchmark (Wang et al., 2018): SST-2, MRPC, CoLA, RTE, and STS-B. These datasets were selected to provide a representative mix of single-sentence and sentence-pair tasks while remaining computationally feasible for the available hardware. All experiments were conducted on a single NVIDIA GeForce RTX 3080 Ti (12GB VRAM).

Implementation and Hyperparameters: I adhere closely to the hyperparameters reported in the original LoRA paper (Hu et al., 2021) and the RoBERTa paper (Liu et al., 2019). For the LoRA configuration, I adapt the query (W_q) and value (W_v) projection matrices in the self-attention modules. A detailed summary of the hyperparameters for both Full Fine-Tuning (FFT) and LoRA is provided in Table 7.

A notable modification was made regarding model initialization. The original LoRA experiments initialized the model weights for the MRPC, RTE, and STS-B tasks using a checkpoint that had already been adapted to the MNLI dataset (Hu et al., 2021). Due to the high computational cost of

162 processing the large MNLI dataset, I omit this intermediate step and fine-tune these tasks directly
 163 from the pre-trained RoBERTa-base checkpoint.

164
Baselines: To provide a comprehensive evaluation, I compare the custom LoRA implementation
 165 against three distinct baselines. First, Full Fine-Tuning (FFT), where all model parameters are re-
 166 trained, serves as the primary performance ceiling. Second, to validate the correctness of the custom
 167 implementation, I compare results against the authors' official `loralib` package. Finally, I reference
 168 the results directly reported in the original LoRA paper (Hu et al., 2021). Comparing against
 169 both the official package and reported numbers is essential because computational constraints pre-
 170 vented the full replication of the authors' MNLI-initialization setup.

171
Resource and Energy Analysis Methodology: In addition to predictive performance, I analyze the
 172 system efficiency of LoRA. I instrument the training loop using the NVIDIA Management Library
 173 (`pyNVML`) to log energy consumption, instantaneous power draw, and GPU utilization at 0.5-second
 174 intervals.

175 To ensure a fair comparison between FFT and the LoRA, I perform an iso-accuracy analysis. I
 176 utilize an early stopping mechanism where training terminates once the model reaches a performance
 177 threshold defined by $\min(\text{LoRA}_{\text{perf}}, \text{FFT}_{\text{perf}}) - 0.005$. This allows for the comparison of the energy
 178 required to reach a specific convergence target rather than simply comparing fixed epoch counts.

180 4.2 PARAMETER EFFICIENCY

181
 182 Table 1 illustrates the dramatic reduction in computational overhead achieved by LoRA. While full
 183 fine-tuning requires updating all 125 million parameters of the RoBERTa-base model, my LoRA
 184 implementation optimizes only 0.3 million parameters, a reduction of approximately 99.76%. This
 185 count is identical to the figure reported in the original LoRA paper, confirming the architectural
 186 correctness of the implementation. This massive reduction validates the core claim that large models
 187 can be adapted with drastically fewer parameters compared to full fine-tuning.

188
 189 Table 1: Trainable parameter counts for Full Fine-Tuning versus LoRA.

190 Method	191 Trainable Params (M)
192 FFT	124.6
193 LoRA(paper)	0.3
194 LoRA(my)	0.3

195 4.3 PERFORMANCE ON DOWNSTREAM TASKS

196
 197 Table 2 benchmarks the predictive performance of my implementation (`LoRA(my)`) against Full
 198 Fine-Tuning (FFT), the original paper's reported results (`LoRA(paper)`), and the official reference
 199 code (`LoRA(ref)`). The reported metrics are Matthew's correlation for CoLA, Pearson correlation
 200 for STS-B, and accuracy for SST-2, MRPC, and RTE.

201
 202 Table 2: Performance comparison of RoBERTa-base fine-tuned through various methods on GLUE
 203 benchmark tasks.

204 Method	205 SST-2	206 MRPC	207 CoLA	208 RTE	209 STS-B
210 FFT	94.4	90.2	62.1	75.5	90.7
211 LoRA(paper)	95.1	89.7	63.4	86.6	91.5
212 LoRA(ref)	94.3	88.5	63.4	77.6	90.2
213 LoRA(my)	94.4	88.2	62.6	76.5	89.9

214 My implementation achieves performance within 2% of the FFT baseline across the GLUE subset,
 215 and notably outperforms FFT on CoLA and RTE. This corroborates the finding that low-rank adap-
 216 tation preserves model capacity and does not degrade downstream task performance compared to
 217 full model updates.

216 A divergence is observed on MRPC, RTE, and STS-B when comparing my results to
 217 LoRA (paper). This is expected since the original paper initializes these specific tasks using a
 218 model previously fine-tuned on MNLI to exploit transfer learning (Hu et al., 2021). Due to compu-
 219 tational constraints, I initialized directly from pre-trained weights. The impact of this is most visible
 220 on RTE (a 10.1% gap), which is a small dataset that benefits significantly from MNLI transfer.

221 Crucially, when compared to the LoRA (ref) baseline, which I ran under the same constraints
 222 without MNLI initialization, my implementation performs within 1.1%. This close alignment acts
 223 as a control, isolating the initialization strategy as the variable for the performance drop rather than
 224 any flaw in the reproduction code.

226 4.4 INFERENCE OVERHEAD

228 Table 3 presents the inference latency on the validation sets. The results show that LoRA (my)
 229 incurs no significant latency overhead compared to the baseline. This empirically validates the
 230 architectural benefit of LoRA. Since the learned low-rank matrices are algebraically merged with
 231 the frozen weights prior to inference, the deployment architecture remains identical to the base
 232 model.

233

234 Table 3: Inference latency (seconds) on GLUE validation sets comparison between baseline (FFT)
 235 and LoRA models.

Method	SST-2	MRPC	CoLA	RTE	STS-B
FFT	0.62	0.47	0.36	0.67	1.10
LoRA(my)	0.63	0.46	0.36	0.65	1.09

241

242

243 4.5 GPU VRAM UTILIZATION

244

245 The original LoRA study reports a memory reduction of up to 2/3 on GPT-3 (Hu et al., 2021)
 246 without performing similar analysis for other models. I aim to analyze how this claim translates to
 247 the significantly smaller RoBERTa-base model. Table 4 presents the average VRAM usage during
 248 training. On average, my LoRA implementation reduces memory usage by 38.0% compared to
 249 Full Fine-Tuning (FFT). While this reduction confirms LoRA lowers the hardware barrier to entry,
 250 enabling training on consumer GPUs, it falls short of the 66% reduction reported for GPT-3 (Hu
 251 et al., 2021).

252

253 Table 4: Average GPU memory utilization (MB) during training.

Method	SST-2	MRPC	CoLA	RTE	STS-B
FFT	3161.7	3539.0	3437.4	10564.1	3702.3
LoRA(my)	1809.6	2072.5	1981.5	6684.0	2704.8

258

259 The variance in reduction across tasks reveals that memory savings are heavily dependent on se-
 260 quence length. Tasks with longer effective sequence lengths, such as RTE and STS-B, require sig-
 261 nificantly more memory for intermediate activations. Despite LoRA, these activations must still
 262 be stored to compute gradients. Consequently, the fixed memory savings from removing optimizer
 263 states are diluted by the large activation overhead in these tasks, resulting in lower relative reductions
 264 (e.g., 26.9% for STS-B) compared to short-sequence tasks like CoLA (42.3%).

266 Furthermore, the discrepancy between my 38% reduction and the 66% reported for GPT-3 highlights
 267 model size dependent behavior. In smaller models like RoBERTa, activation memory constitutes
 268 a much larger proportion of the total footprint than in massive models where parameter weights
 269 dominate. Finally, I note that my Python-based implementation lacks the fused kernel optimizations
 of production libraries, which may slightly underestimate the potential efficiency gains.

270 4.6 ENERGY CONSUMPTION AND EFFICIENCY
271272 While the primary contribution of LoRA is memory reduction, the original study also notes a 25%
273 speedup during GPT-3 training (Hu et al., 2021). I extend this analysis to RoBERTa to determine
274 if parameter efficiency translates to energy efficiency, which would broaden LoRA’s applicability
275 to resource-constrained environments beyond just memory limitations. I employ an iso-accuracy
276 stopping criterion to compare the total energy required to reach identical performance levels. Tables
277 5 and 6 detail the power, time, and energy metrics.
278
279280 Table 5: Full Fine-Tuning efficiency metrics.
281

Metric	SST-2	MRPC	CoLA	RTE	STS-B
Power Avg (W)	327.9	290.7	299.6	321.0	316.3
Train Time (s)	644.9	53.8	112.5	194.2	64.8
Training Epochs	4	3	8	10	3
Total Energy (kJ)	191.0	14.2	30.5	56.5	18.6

290 Table 6: LoRA efficiency metrics.
291

Metric	SST-2	MRPC	CoLA	RTE	STS-B
Power Avg (W)	334.7	325.8	325.2	325.0	327.0
Train Time (s)	756.0	60.6	433.2	128.1	95.6
Training Epochs	8	6	56	9	7
Total Energy (kJ)	227.9	18.0	127.5	37.8	28.4

292 LoRA exhibits a slightly higher average power draw than Full Fine-Tuning (FFT) due to increased
293 overheads for computing low-rank adaptations during training. Furthermore, RoBERTa’s relatively
294 small memory footprint likely shifts the workload from memory-bound to compute-bound, main-
295 taining high GPU utilization.
296297 Regarding total efficiency, LoRA epochs completed approximately 40% faster than FFT epochs
298 due to the elimination of gradient calculations for frozen weights. However, this throughput gain
299 failed to translate into net energy savings. On average, LoRA increased total energy consumption,
300 primarily driven by tasks like CoLA which required significantly more epochs to converge (56 vs
301 8). However, on tasks where convergence rates were similar, such as RTE, LoRA actually reduced
302 total energy consumption (37.8 kJ vs 56.5 kJ). This suggests that while LoRA decouples training
303 from VRAM constraints, energy efficiency is not guaranteed and is highly sensitive to the specific
304 optimization dynamics of the downstream task.
305313 5 CONCLUSION
314315 This reproduction successfully verifies the core value proposition of Low-Rank Adaptation (LoRA),
316 demonstrating that it yields predictive performance comparable to full fine-tuning while reducing
317 trainable parameters by 99.7% and introducing zero inference latency. However, my holistic effi-
318 ciency analysis reveals that the benefits reported for massive models like GPT-3 do not strictly scale
319 down to smaller architectures like RoBERTa-base. While LoRA lowers the hardware barrier to en-
320 try, my results indicate that memory savings are capped by the dominance of activation memory over
321 parameter storage in smaller models, and that total energy consumption can increase due to slower
322 convergence rates. Therefore, future work should prioritize optimizing LoRA implementations for
323 regimes where activation memory is a greater bottleneck and investigating convergence acceleration
techniques to ensure that parameter efficiency translates into energy efficiency.
324

324 REFERENCES
325

326 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
327 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
328 NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th In-
329 ternational Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning
330 Research*, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/houlsby19a.html>.

331

332 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
333 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.

335 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.
336 URL <https://arxiv.org/abs/2101.00190>.

337

338 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
339 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
340 approach, 2019. URL <https://arxiv.org/abs/1907.11692>.

341

342 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
343 A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
344 Grzegorz Chrupała, and Afra Alishahi (eds.), *Proceedings of the 2018 EMNLP Workshop Black-
345 boxNLP: Analyzing and Interpreting Neural Networks for NLP*, pp. 353–355, Brussels, Belgium,
346 November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
347 <https://aclanthology.org/W18-5446/>.

348

349 A APPENDIX
350

351 Method	352 Hyperparameter	353 SST-2	354 MRPC	355 CoLA	356 RTE	357 STS-B
Optimizer LR Schedule		AdamW Linear				
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	353 Batch Size	16	16	32	32	16
	353 # Epochs	5	5	10	10	10
	353 Learning Rate	2E-05	3E-05	3E-05	3E-05	3E-05
	353 Weight Decay			0.01		
RoBERTa base (FFT)	Batch Size	16	16	32	32	16
	# Epochs	60	30	80	80	40
	Learning Rate	5E-04	4E-04	4E-04	5E-04	4E-04
	Weight Decay			0.06		
	LoRA Config.			$r_q = r_v = 8$		
	LoRA α			8		
RoBERTa base (LoRA)	Max Seq. Len.			512		

365 Table 7: The hyperparameters used for RoBERTa on the GLUE benchmark.
366