Under review as a conference paper at ICLR 2026

TINY REPRODUCTION: LORA

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents a reproduction study of Low-Rank Adaptation (LoRA), a
technique designed to adapt large pre-trained language models by injecting train-
able low-rank matrices into frozen layers. Using RoBERTa-base evaluated on the
GLUE benchmark, I verify the original authors’ central claims: my implemen-
tation matches the performance of full fine-tuning within 2% while reducing the
number of trainable parameters by 99.7% and introducing zero additional infer-
ence latency. Beyond standard replication, I extend the analysis to profile system
efficiency on a smaller model architecture.

1 INTRODUCTION

The paradigm of natural language processing (NLP) has shifted significantly toward large-scale pre-
training on general domain data followed by adaptation to downstream tasks. As models continue
to scale, the standard approach of full fine-tuning, which involves retraining all model parameters,
has become computationally prohibitive and inefficient.

To address these challenges, Parameter-Efficient Fine-Tuning (PEFT) methods were developed to
adapt large models by updating only a small fraction of the parameters. However, prior to the intro-
duction of Low-Rank Adaptation (LoRA) (Hu et al., [2021), the prevailing state-of-the-art PEFT ap-
proaches introduced new trade-offs. Adapter layers, while parameter-efficient, insert sequential lay-
ers between existing model modules, inevitably introducing inference latency. Alternatively, prefix-
tuning optimizes continuous prompt vectors but reduces the available effective sequence length for
the input, thereby limiting the model’s context window.

In response to these limitations, LoRA is founded on the hypothesis that the change in weights
during model adaptation has a low “intrinsic rank”. Instead of updating the full weight matrices,
LoRA freezes the pre-trained model weights and injects trainable low-rank decomposition matrices
into the Transformer layers. This architecture allows the trainable matrices to be merged with the
frozen weights during inference, eliminating the latency overhead associated with adapter layers
while preserving the model’s input sequence length.

This project serves as a ”Tiny Reproduction” of the original LoRA paper, aiming to verify its core
claims regarding parameter efficiency, model performance, and inference latency. Due to the com-
putational constraints of directly recreating the original experiments, this study scales down the
experimental setup to a RoBERTa-base model evaluated on selected tasks from the GLUE bench-
mark.

Specifically, this report seeks to validate three core results from the original study. First, I demon-
strate that LoRA drastically reduces the number of trainable parameters compared to full fine-tuning.
Second, I confirm that the method achieves performance comparable to full fine-tuning on down-
stream GLUE tasks. Finally, I verify that LoRA introduces zero additional inference latency com-
pared to the baseline model.

In addition to replicating these core findings, I extend the analysis by conducting a holistic eval-
uation of training efficiency, focusing on two key metrics that go beyond standard performance
benchmarks. I examine GPU memory utilization to verify the tangible impact of improving parame-
ter efficiency through LoRA. Furthermore, I profile energy consumption to determine whether these
parameter-efficiency improvements translate into distinct energy-efficiency gains.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

A prominent approach to parameter-efficient transfer learning is the introduction of adapter modules
(Houlsby et al.l 2019). This method inserts small, trainable fully connected networks between the
frozen layers of a pre-trained Transformer model. During fine-tuning, only these adapter modules
are updated, while the original model parameters remain fixed. This approach significantly improves
parameter efficiency; for example, adapters have achieved performance within 0.4% of full fine-
tuning on the GLUE benchmark while training only 3.6% of the parameters per task. However,
a primary drawback of adapter layers is the introduction of inference latency. Because adapters
are additional layers processed sequentially within the network, they prevent the model from fully
leveraging hardware parallelism, resulting in slower inference speeds compared to the base model.

An alternative lightweight adaptation method is Prefix-Tuning (Li & Liang} 2021)), which focuses
on optimizing the input rather than the model architecture. This technique freezes the language
model parameters and optimizes a small, continuous vector called a “prefix” that is prepended to the
input tokens. These prefixes act as “virtual tokens” to steer the model’s generation for specific tasks.
Prefix-tuning has demonstrated performance comparable to full fine-tuning with as few as 0.1% of
the parameters and can outperform full fine-tuning in low-data regimes. However, its reliance on
prompt tokens reduces the usable input sequence length. Because a portion of the context window
is reserved for the prefix, less space is available for the actual task data, which limits the model’s
ability to process long sequences.

These methods highlight a critical trade-off in parameter-efficient fine-tuning: reducing trainable
parameters often comes at the cost of either inference latency or effective context window size.

3 PROPOSED METHOD

3.1 LORA FORMULATION

This project implements Low-Rank Adaptation (LoRA) based on the hypothesis that the change in
weights during model adaptation possesses a low “intrinsic rank” (Hu et al., 2021). In a standard
neural network dense layer, a pre-trained weight matrix W, € R*¥ is typically updated via full
fine-tuning such that W = W, + AW . LoRA constrains this update AW by representing it as the
product of two low-rank matrices B € R%*" and A € R™*¥, where the rank r < min(d, k).

During the training process, Wy is frozen and receives no gradient updates. Only A and B, which
have significantly fewer parameters than the original weight matrix, are treated as trainable parame-
ters. The modified forward pass for an input x is expressed as:

h=Wox + AWz = Wor + S BAz
T

Here, AWz is scaled by a factor of %, where « is a constant in r. This scaling factor is critical for
tuning efficiency since it acts as a normalization term that reduces the need to retune the learning
rate when the rank r is varied.

To ensure the training stability of the adaptation, LoORA employs a specific initialization strategy.
The matrix B is initialized to zero, while A is initialized with random values (specifically Kaiming
uniform initialization in my implementation). This ensures that at the start of training, AW =
BA = 0, meaning the model initially behaves exactly like the pre-trained model.

A key advantage of this formulation is that it has no inference latency overhead since the learned
matrices can be directly combined with the original weights. For deployment, LoRA computes the
explicit weight matrix W' = Wy + % BA. Inference is then performed using W', resulting in zero
additional computational overhead compared to the base model.

3.2 LORA IMPLEMENTATION

To replicate LoRA, I implemented a custom PyTorch module, ‘lora_linear‘, which wraps standard
linear layers. The key implementation logic is summarized in Algorithm

Under review as a conference paper at ICLR 2026

Algorithm 1 Custom torch.nn.Module class for LoORA

Require: Input z € RP*%n Weights W € Ru:Xdin Bias 3, Rank r, Scaling Hyperparameter o
. merge_status < False
scale < a/r
A € R"™ 4 « kaiming_uniform_(a = v/5) > Init A with Kaiming Uniform
B € R¥outXT () > Init B to zeros
function TOGGLEMERGE(merge) > Merge weights for inference
if merge is True then
W+ W + (BA) - scale
else
W < W — (BA) - scale
end if
merge_status <— merge
. end function

PRDINRR D

—— —
Mo ew

13: function FORWARD(x) > Forward pass logic
14: if merge_status is True then

15: return zW7T + 3

16: else

17: out +— a2W7T 4+ 8

18: lora < (xATBT) - scale

19: return out + lora

20: end if

21: end function

As detailed in the algorithm, the forward pass maintains two separate computational paths. The first
path computes the standard linear projection using the frozen pre-trained weights (Wj). The second
path computes the low-rank adaptation term. The input z is projected down to the rank dimension r
by matrix A, and then projected back up to the output dimension by matrix B. These two outcomes
are summed to produce the final activation.

To enable zero inference latency overhead, the implementation includes a ‘toggle_merge* function.
When enabled, this function performs the calculation Wyerged = Woriginai + (B X A) x scale
and updates the layer’s weight parameter in-place. This effectively “bakes” the learned low-rank
features into the standard weight matrix. The flag ‘merged_weight‘ ensures that the expensive matrix
multiplication for the LoRA path is skipped during the forward pass when weights are merged,
reverting the layer to a standard linear operation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets: To validate the effectiveness of LoRA, I employ the RoBERTa-base model
(125M parameters) (Liu et al.,[2019). Following the "Tiny Reproductions” track guidelines, I scale
down the evaluation scope to five datasets from the GLUE benchmark (Wang et al.| 2018): SST-2,
MRPC, CoLA, RTE, and STS-B. These datasets were selected to provide a representative mix of
single-sentence and sentence-pair tasks while remaining computationally feasible for the available
hardware. All experiments were conducted on a single NVIDIA GeForce RTX 3080 Ti (12GB
VRAM).

Implementation and Hyperparameters: I adhere closely to the hyperparameters reported in the
original LoRA paper (Hu et al.,|2021) and the RoBERTa paper (L1u et al.;, 2019)). For the LoRA con-
figuration, I adapt the query (I¥,) and value (W,) projection matrices in the self-attention modules.
A detailed summary of the hyperparameters for both Full Fine-Tuning (FFT) and LoRA is provided
in Table 71

A notable modification was made regarding model initialization. The original LoRA experiments
initialized the model weights for the MRPC, RTE, and STS-B tasks using a checkpoint that had
already been adapted to the MNLI dataset (Hu et al., 2021). Due to the high computational cost of

Under review as a conference paper at ICLR 2026

processing the large MNLI dataset, I omit this intermediate step and fine-tune these tasks directly
from the pre-trained RoBERTa-base checkpoint.

Baselines: To provide a comprehensive evaluation, I compare the custom LoRA implementation
against three distinct baselines. First, Full Fine-Tuning (FFT), where all model parameters are re-
trained, serves as the primary performance ceiling. Second, to validate the correctness of the custom
implementation, I compare results against the authors’ official 1oralib package. Finally, I refer-
ence the results directly reported in the original LoRA paper (Hu et al.,2021). Comparing against
both the official package and reported numbers is essential because computational constraints pre-
vented the full replication of the authors’ MNLI-initialization setup.

Resource and Energy Analysis Methodology: In addition to predictive performance, I analyze the
system efficiency of LoRA. I instrument the training loop using the NVIDIA Management Library
(pyNVML) to log energy consumption, instantaneous power draw, and GPU utilization at 0.5-second
intervals.

To ensure a fair comparison between FFT and the LoRA, I perform an iso-accuracy analysis. I
utilize an early stopping mechanism where training terminates once the model reaches a performance
threshold defined by min(LoRApers, FFTpers) — 0.005. This allows for the comparison of the energy
required to reach a specific convergence target rather than simply comparing fixed epoch counts.

4.2 PARAMETER EFFICIENCY

Table [I|illustrates the dramatic reduction in computational overhead achieved by LoRA. While full
fine-tuning requires updating all 125 million parameters of the RoOBERTa-base model, my LoRA
implementation optimizes only 0.3 million parameters, a reduction of approximately 99.76%. This
count is identical to the figure reported in the original LoRA paper, confirming the architectural
correctness of the implementation. This massive reduction validates the core claim that large models
can be adapted with drastically fewer parameters compared to full fine-tuning.

Table 1: Trainable parameter counts for Full Fine-Tuning versus LoRA.

Method Trainable Params (M)
FFT 124.6
LoRA(paper) 0.3
LoRA(my) 0.3

4.3 PERFORMANCE ON DOWNSTREAM TASKS

Table [2| benchmarks the predictive performance of my implementation (LoRA (my)) against Full
Fine-Tuning (FF T), the original paper’s reported results (LoRA (paper)), and the official reference
code (LoRA (ref)). The reported metrics are Matthew’s correlation for CoL A, Pearson correlation
for STS-B, and accuracy for SST-2, MRPC, and RTE.

Table 2: Performance comparison of RoBERTa-base fine-tuned through various methods on GLUE
benchmark tasks.

Method SST-2 MRPC CoLA RTE STS-B
FFT 94.4 90.2 62.1 755 90.7
LoRA(paper) 95.1 89.7 63.4 86.6 91.5
LoRA(ref) 943 88.5 634 77.6 90.2
LoRA(my) 94.4 88.2 62.6 76.5 89.9

My implementation achieves performance within 2% of the FFT baseline across the GLUE subset,
and notably outperforms FFT on CoLA and RTE. This corroborates the finding that low-rank adap-
tation preserves model capacity and does not degrade downstream task performance compared to
full model updates.

Under review as a conference paper at ICLR 2026

A divergence is observed on MRPC, RTE, and STS-B when comparing my results to
LoRA (paper). This is expected since the original paper initializes these specific tasks using a
model previously fine-tuned on MNLI to exploit transfer learning (Hu et al., 2021). Due to compu-
tational constraints, I initialized directly from pre-trained weights. The impact of this is most visible
on RTE (a 10.1% gap), which is a small dataset that benefits significantly from MNLI transfer.

Crucially, when compared to the LoRA (ref) baseline, which I ran under the same constraints
without MNLI initialization, my implementation performs within 1.1%. This close alignment acts
as a control, isolating the initialization strategy as the variable for the performance drop rather than
any flaw in the reproduction code.

4.4 INFERENCE OVERHEAD

Table E] presents the inference latency on the validation sets. The results show that LoRA (my)
incurs no significant latency overhead compared to the baseline. This empirically validates the
architectural benefit of LoRA. Since the learned low-rank matrices are algebraically merged with
the frozen weights prior to inference, the deployment architecture remains identical to the base
model.

Table 3: Inference latency (seconds) on GLUE validation sets comparison between baseline (FFT)
and LoRA models.

Method SST-2 MRPC CoLA RTE STS-B

FFT 0.62 0.47 0.36 0.67 1.10
LoRA(my) 0.63 0.46 0.36 0.65 1.09

4.5 GPU VRAM UTILIZATION

The original LoRA study reports a memory reduction of up to 2/3 on GPT-3 (Hu et al., 2021)
without performing similar analysis for other models. I aim to analyze how this claim translates to
the significantly smaller RoOBERTa-base model. Table {4 presents the average VRAM usage during
training. On average, my LoRA implementation reduces memory usage by 38.0% compared to
Full Fine-Tuning (FFT). While this reduction confirms LoRA lowers the hardware barrier to entry,
enabling training on consumer GPUs, it falls short of the 66% reduction reported for GPT-3 (Hu
et al., 2021)).

Table 4: Average GPU memory utilization (MB) during training.

Method SST-2 MRPC CoLA RTE STS-B

FFT 3161.7 3539.0 34374 10564.1 3702.3
LoRA(my) 1809.6 2072.5 1981.5 6684.0 2704.8

The variance in reduction across tasks reveals that memory savings are heavily dependent on se-
quence length. Tasks with longer effective sequence lengths, such as RTE and STS-B, require sig-
nificantly more memory for intermediate activations. Despite LoRA, these activations must still
be stored to compute gradients. Consequently, the fixed memory savings from removing optimizer
states are diluted by the large activation overhead in these tasks, resulting in lower relative reductions
(e.g., 26.9% for STS-B) compared to short-sequence tasks like CoLA (42.3%).

Furthermore, the discrepancy between my 38% reduction and the 66% reported for GPT-3 highlights
model size dependent behavior. In smaller models like ROBERTa, activation memory constitutes
a much larger proportion of the total footprint than in massive models where parameter weights
dominate. Finally, I note that my Python-based implementation lacks the fused kernel optimizations
of production libraries, which may slightly underestimate the potential efficiency gains.

Under review as a conference paper at ICLR 2026

4.6 ENERGY CONSUMPTION AND EFFICIENCY

While the primary contribution of LoRA is memory reduction, the original study also notes a 25%
speedup during GPT-3 training (Hu et al.| 2021). I extend this analysis to ROBERTa to determine
if parameter efficiency translates to energy efficiency, which would broaden LoRA’s applicability
to resource-constrained environments beyond just memory limitations. I employ an iso-accuracy
stopping criterion to compare the total energy required to reach identical performance levels. Tables
[5) and [6] detail the power, time, and energy metrics.

Table 5: Full Fine-Tuning efficiency metrics.

Metric SST-2 MRPC CoLA RTE STS-B

Power Avg (W) 3279 2907 2996 321.0 3163
Train Time (s) 644.9 53.8 1125 194.2 64.8
Training Epochs 4 3 8 10 3
Total Energy (kJ) 191.0 14.2 305 56.5 18.6

Table 6: LoRA efficiency metrics.

Metric SST-2 MRPC CoLA RTE STS-B

Power Avg (W) 3347 3258 3252 3250 327.0
Train Time (s) 756.0 60.6 4332 128.1 95.6
Training Epochs 8 6 56 9 7
Total Energy (kJ) 227.9 180 1275 378 28.4

LoRA exhibits a slightly higher average power draw than Full Fine-Tuning (FFT) due to increased
overheads for computing low-rank adaptations during training. Furthermore, ROBERTa’s relatively
small memory footprint likely shifts the workload from memory-bound to compute-bound, main-
taining high GPU utilization.

Regarding total efficiency, LoRA epochs completed approximately 40% faster than FFT epochs
due to the elimination of gradient calculations for frozen weights. However, this throughput gain
failed to translate into net energy savings. On average, LoRA increased total energy consumption,
primarily driven by tasks like CoLA which required significantly more epochs to converge (56 vs
8). However, on tasks where convergence rates were similar, such as RTE, LoRA actually reduced
total energy consumption (37.8 kJ vs 56.5 kJ). This suggests that while LoRA decouples training
from VRAM constraints, energy efficiency is not guaranteed and is highly sensitive to the specific
optimization dynamics of the downstream task.

5 CONCLUSION

This reproduction successfully verifies the core value proposition of Low-Rank Adaptation (LoRA),
demonstrating that it yields predictive performance comparable to full fine-tuning while reducing
trainable parameters by 99.7% and introducing zero inference latency. However, my holistic effi-
ciency analysis reveals that the benefits reported for massive models like GPT-3 do not strictly scale
down to smaller architectures like ROBERTa-base. While LoRA lowers the hardware barrier to en-
try, my results indicate that memory savings are capped by the dominance of activation memory over
parameter storage in smaller models, and that total energy consumption can increase due to slower
convergence rates. Therefore, future work should prioritize optimizing LoRA implementations for
regimes where activation memory is a greater bottleneck and investigating convergence acceleration
techniques to ensure that parameter efficiency translates into energy efficiency.

Under review as a conference paper at ICLR 2026

REFERENCES

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2790-2799. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.

press/v97/houlsbyl9a.html.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:

//arxiv.org/abs/2106.09685.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.

URLhttps://arxiv.org/abs/2101.00190.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining

approach, 2019. URL https://arxiv.org/abs/1907.11692,

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
Grzegorz Chrupata, and Afra Alishahi (eds.), Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353-355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL

https://aclanthology.org/W18-5446/.

A APPENDIX

Method Hyperparameter ‘ SST-2 MRPC CoLA RTE STS-B
Optimizer AdamW
LR Schedule Linear
Batch Size 16 16 32 32 16
RoBERTa base # Epochs 5 5 10 10 10
(FFT) Learning Rate 2E-05 3E-05 3E-05 3E-05 3E-05
Weight Decay 0.01
Batch Size 16 16 32 32 16
Epochs 60 30 80 80 40
RoBERTa base Learning Rate SE-04 4E-04 4E-04 SE-04 4E-04
(LoRA) Weight Decay 0.06
LoRA Config. Tq="Ty =28
LoRA « 8
Max Seq. Len. 512

Table 7: The hyperparameters used for ROBERTa on the GLUE benchmark.

https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/1907.11692
https://aclanthology.org/W18-5446/

	Introduction
	Related Work
	Proposed Method
	LoRA Formulation
	LoRA Implementation

	Experiments
	Experimental Setup
	Parameter Efficiency
	Performance on Downstream Tasks
	Inference Overhead
	GPU VRAM Utilization
	Energy Consumption and Efficiency

	Conclusion
	Appendix

