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1. Abstract  
This work develops an optimal Multilayer Perceptron(MLP) and Convolutional Neural 
Network(CNN) through hyperparameter optimization and compares their performance in image 
classification. The Fashion-MNIST dataset was used for training and testing. Since accuracy is 
not a comprehensive measure of performance, the two classifiers were evaluated using a 
combination of several performance metrics, in addition to 10-fold cross validation.  The work 
evaluated the relative performance of the two neural networks using the performance metrics of 
precision, recall, f1-score, Cohen’s Kappa, Matthews Correlation Coefficient, and Cross-
Entropy. This resulted in a thorough comparison wherein the per-class performance and overall 
performance of the two neural networks could be evaluated. Of the two neural networks, CNN 
consistently performed better than MLP across all metrics. 

2. Background  
Neural networks are a collection of interconnected nodes, analogous to biological neural 
networks. Biological neural networks, composed of functionally associated neurons that are 
interconnected by synapses, play a critical role in the learning process for many animals that 
have an evolved nervous system. It is through these networks that the organisms with cognitive 
abilities develop a learned behavior that helps them better adapt to their environment. Drawing 
inspiration from the brain, artificial neural networks enable computers to solve cognitive tasks at 
which only humans excel. Just like a human brain, machines can be trained to perform certain 
tasks by analyzing training datasets. A perceptron, which is analogous to a biological neuron, is 
the fundamental unit of neural networks. A model of a perceptron that computes an output based 
on the weighted sum of its inputs is shown in figure 1. The weights allow the inputs to have 
differing levels of influence over the perceptron’s output and the mathematical function used to 
compute the output is known as an activation function. The Multilayer Perceptron (MLP) is an 
example of a neural network which consists of layers of fully connected perceptrons.   

 
Figure 1: Model of a Perceptron 



MLP’s are formed by arranging perceptrons into layers as shown in figure 2. These neural 
networks are trained through a gradient descent process known as backpropagation where the 
error of the output of the network is minimized by adjusting the values of the weights.  

 
Figure 2: Example of a Multilayer Perceptron with a single hidden layer 

With each layer further abstracting the input, MLP’s are powerful because they can amplify 
aspects of the input that are important for classification while suppressing irrelevant 
information[6]. This property makes them particularly useful in image classification tasks where 
the complex task of identifying an object can be decomposed into simpler tasks such as 
identifying curves and edges. The key feature and advantage of MLP’s is that this decomposition 
is not done manually but is rather learned automatically during training[6]. 

Convolutional neural networks (CNN’s) evolved from MLP’s and were found to be more 
flexible and easier to train[6]. Figure 3 shows an example of a general CNN.  

  
Figure 3: Generalized example of a Convolutional Neural Network[9] 

The primary difference between CNN’s and MLP’s is that CNN’s have an additional feature 
learning phase that consists of several alternating stacks of convolutional and pooling layers 



before the fully connected neural network[6]. The convolutional layer convolves a filter matrix 
over the input while the pooling layer summarizes the input into a smaller output[7]. These 
layers are also important in other modern machine learning methods such as Fully Convolutional 
Networks(FCN) which fully omit the fully connected neural network and have found application 
in the task of semantic segmentation[8]. 

3. Related Works  
This study was motivated by the need to rigorously cross examine the robustness of MLP and 
CNN as models of neural networks. While exploring an optimal dataset for comparing 
classifiers, a few studies were found that had evaluated the performance of these two neural 
networks. These studies tested the robustness of MLP and CNN models using classification 
accuracy. The Fashion-MNIST dataset Github page lists the classification accuracy of various 
classifiers in classifying its images [16]. Examples include the CNN designed by Dezhic [14] 
and MLP designed by Heitorrapela [15] which were able to achieve accuracies of .947 and .89, 
respectively. However, accuracy by itself is not an adequate measure of performance. Though it 
is very simple and intuitive, it is poor in assessing imbalanced data. Even for perfectly balanced 
classes, accuracy is over simplistic and does not capture the nuances of the performance of 
classifiers. Therefore, in order to perform a valid comparison of classifiers for the Fashion-
MNIST dataset, multiple performance metrics must be used.  

This work aims to rectify this shortcoming by using the metrics of precision, recall, f1-score, 
Cohen’s Kappa, Matthews Correlation Coefficient, and Cross-Entropy to compare the 
performance of a MLP and CNN classifier. Furthermore, the various classifiers benchmarked on 
the Fashion-MNIST used a single training dataset and testing dataset. This work aims to further 
increase the validity of the performance metrics through performing 10-fold cross validation.  

It is also unclear whether the classifiers listed on the Fashion-MNIST Github use the optimal 
hyperparameters. This work seeks to explore the optimal hyperparameters for CNN and MLP 
classifiers using hyperparameter optimization.   

4. Methodology  
A. Dataset  

The Fashion-MNIST dataset was used for this project. It consists of 60,000 28x28 pixel 
grayscale images of clothing items that are assigned to a label from 10 different classes, as 
shown in Table 1. The Uniform Manifold Approximation and Projection (UMAP) visualization 
of the Fashion-MNIST dataset is shown in figure 4.  

 

 

 

 

  



Table 1: Labels and descriptions of data from the Fashion-MNIST dataset 

Label Description  Example 
0 T-shirt/top 

 
1 Trouser 

 
2 Pullover 

 
3 Dress 

 
4 Coat 

 
5 Sandal 

 
6 Shirt 

 
7 Sneaker 

 
8 Bag 

 
9 Ankle boot 

 
 



 
Figure 4: UMAP visualization of the Fashion-MNIST dataset[2] 

The Fashion-MNIST dataset was developed as a replacement for the extremely popular MNIST 
dataset which had quite a few shortcomings. Primarily, the MNIST dataset is not complex 
enough since even simple machine learning algorithms can achieve an accuracy of 97%[1]. The 
Fashion-MNIST dataset was chosen with the rationale that its increased complexity would make 
the difference between the performance of MLP and CNN algorithms more distinguishable. 
Furthermore, Fashion-MNIST is already included in various machine learning libraries such as 
Keras, making it convenient to use for training.  

B. Implementation of MLP and CNN Algorithms  
The Keras Python library with the TensorFlow 2 backend was used to implement the CNN and 
MLP neural networks. Keras is a deep-learning API that allows the user to build and train neural 
networks[3]. Moreover, Keras is also highly configurable and enables the user with full control 
over hyperparameters. The combination of these features makes Keras ideal for implementing 
neural networks. 

To allow for hyperparameter optimization, the CNN and MLP neural networks were built using 
functions that take hyperparameters as their input and output compiled Keras models. The MLP 
neural networks followed the architecture shown in figure 5 and consisted of three layers, 
namely the input layer, hidden layer, and the output layer. The input layer flattens the image to 
one dimension to allow it to be classified by the neural network. The variable number of hidden 
layers contain a variable number of neurons and use the rectified linear unit function(reLU) as 
their activation function. Lastly, the output layer contains ten neurons associated with each 



clothing category and uses the softmax activation function to normalize the output to a 
probability distribution over predicted output classes. 

 

 
Figure 5: Architecture of MLP neural network 

The architecture of the CNN is as shown in figure 6. Essentially, it contains the three layers of 
the MLP architecture from figure 5 preceded by convolution and pooling layers. Each 
convolution layer contains a variable number of filters that have a size of 3x3, and use the reLU 
activation function. Meanwhile, the pooling layers have a size of 2x2. The number of alternating 
convolution and pooling layers in addition to the number of hidden layers, and the number of 
neurons in each hidden layer are variable.  

Both the CNN and MLP neural networks used sparse categorical cross entropy for their loss 
function and used stochastic gradient descent for training. Furthermore, the learning rates for 
both neural networks were also variable.  

 

 



 
Figure 6: Architecture of MLP neural network 

C. Hyperparameter Optimization 
The CNN and MLP neural networks were implemented using Keras and their hyperparameters 
were optimized to ensure that the two machine learning algorithms could be fairly compared. 
Namely, the number of hidden layers, number of neurons, and learning rate hyperparameters 
were optimized for the MLP. On the other hand, the same hyperparameters in addition to the 
numbers of the convolution and pooling layers, and the number of filters in the convolution 
layers were optimized for the CNN. The sets of the optimized hyperparameters are listed in 
Table 2.  

Table 2: Range of hyperparameters used for optimization 

Hyperparameter Set used for MLP  Set used for CNN 

Number of hidden layers [1,10] [1,10] 

Number of neurons in each 
hidden layer 

[1,100] [1,100] 

Learning rate {3e-2, 3e-3,3e-4} {3e-2, 3e-3,3e-4} 

Number of convolution and 
pooling layers 

NA [1,4] 

Filters in convolution layer NA [32,256] with step size of 32 

 



Hyperparameter optimization is still a nascent field of research and as a result, the best method to 
perform the optimization is unclear. Based on the literature review, Random Search was deemed 
suitable for this problem, as research has shown it to be more effective than Grid Search [4]. The 
Keras Tuner Library includes a random search function for hyperparameter optimization and was 
used for this project. A total of 100 random hyperparameters for both of the neural networks 
were tested using Keras Tuner and the metric of accuracy was used to select the best 
hyperparameters.  

D. Performance Evaluation  
After selecting the best hyperparameters, the CNN and MLP neural networks were trained and 
evaluated using 10-fold cross validation. The Scikit-learn Python library was used to evaluate the 
performance of each model. The performance metrics of precision, recall, f1-score, Cohen’s 
Kappa, Matthews Correlation Coefficient (MCC), and Cross-Entropy were used to compare the 
performance of both of the neural networks. 

5. Results 
The optimal hyperparameters of the CNN and MLP neural networks after 100 trials of random 
search are shown in Tables 3 and 4, respectively.   

Table 3: Optimal hyperparameters for CNN 

Hyperparameter Optimal Value 

Number of convolution and pooling layers 2 

Filters in convolutional layer 1 224 

Filters in convolutional layer 2 192 

Number of hidden layers 2 

Neurons in hidden layer 1 52 

Neurons in hidden layer 2 11 

Learning rate 0.03 

 

 

 

 

 

 

 



Table 4: Optimal hyperparameters for MLP 

Hyperparameter Optimal Value 

Number of hidden layers 6 

Neurons in hidden layer 1 61 

Neurons in hidden layer 2 30 

Neurons in hidden layer 3 59 

Neurons in hidden layer 4 19 

Neurons in hidden layer 5 85 

Neurons in hidden layer 6 66 

Learning rate 0.0003 

The classification reports for the CNN and MLP neural networks which consist of the precision, 
recall, f1-score, and support for each class are shown in tables 5 and 6, respectively. The values 
in Tables 5 and 6 represent an average of the values that were obtained from 10-fold cross 
validation.  

Table 5: Classification report for CNN 

Classification Report for CNN 

Class precision recall f1-score support 

T-shirt/top        0.896 0.831 0.86 700 

Trouser        0.993 0.987 0.989 700 

Pullover        0.884 0.849 0.866 700 

Dress        0.908 0.934 0.921 700 

Coat        0.846 0.863 0.85 700 

Sandal        0.988 0.983 0.987 700 

Shirt        0.749 0.781 0.754 700 

Sneaker        0.958 0.975 0.964 700 

Bag        0.991 0.987 0.99 700 

Ankle boot        0.977 0.964 0.97 700 



 

Table 6: Classification report for MLP 

Classification Report for MLP 

Class precision recall f1-score support 

T-shirt/top        0.834 0.837 0.83 700 

Trouser        0.991 0.977 0.982 700 

Pullover        0.818 0.793 0.797 700 

Dress        0.882 0.914 0.897 700 

Coat        0.795 0.801 0.793 700 

Sandal        0.948 0.972 0.955 700 

Shirt        0.736 0.676 0.692 700 

Sneaker        0.944 0.935 0.937 700 

Bag        0.97 0.977 0.974 700 

Ankle boot        0.967 0.925 0.94 700 

 

The average accuracy, Cohen’s Kappa, MCC, and cross entropy performance metrics for both of 
the neural networks are shown in table 6.  

Table 6: Average accuracy, Cohen’s Kappa, MCC, and cross entropy for MLP and CNN 

  CNN MLP 

Accuracy 0.915 0.880 

Cohen's Kappa 0.906 0.868 

MCC 0.906 0.869 

Cross-Entropy 0.227 0.324 

 



The average normalized confusion matrices for the CNN and MLP are shown in figures 7, and 8, 
respectively.  

 

 
Figure 7: Normalized confusion matrix for the CNN 

 
Figure 8: Normalized confusion matrix for the MLP 

6. Discussion 
 

Based on the classification report, both the methods had better precision, recall and f1-scores 
when it came to identifying items such as trouser, sandal, sneaker, bag, and ankle boot but had 
slightly low scores for items such as t-shirt/top, pullover, dress, coat, and shirt. This result is 
intuitive based on the visual similarity of the t-shirt/top, pullover, dress, coat, and shirt classes as 
exhibited by their proximity in the UMAP visualization from figure 4. Among the two neural 
networks, CNN consistently had higher precision, recall, and f1-score than the MLP. The metric 
of Precision is calculated, as shown by equation 1, as the ratio of true positives (TP) divided by 
the sum of true positives and false positives (FP). In other words, a higher precision value 
indicates the proportion of positive identifications that were correct. Since the CNN had higher 
precision values for its classes, it can be inferred that the CNN produced fewer false positives 
and more true positives than MLP. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑃𝑃/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)                                                                              𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 1  

On the other hand, Recall, as given by equation 2, is a ratio of true positives divided by a sum of 
true positives and false negatives. It measures the proportion of the actual positives that were 
identified correctly. Therefore, the fact that the CNN has higher recall values than the MLP is 
indicative that the CNN had fewer false negatives and more true positives.   



𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)                                                                                   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2  

Ideally, a model should have both high precision and high recall. The f1-score, as shown in 
equation 3, is the harmonic mean of precision and recall and substantiates that a model has both 
high precision and recall. Since the CNN had better f1-scores than the MLP, it can be concluded 
that its combined precision and recall scores are also better than the MLP.   

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙/(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)                                 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 3  

Based on the confusion matrices from figures 7 and 8, the trouser, sandal, sneaker, bag, and 
ankle boot classes were the most correctly identified classes while the t-shirt/top, pullover, dress, 
coat, and shirt classes were sometimes confused. This result is commensurate with the relative 
lower precision, recall, and f1-scores for these classes and reflects their visual similarity as 
exhibited by the UMAP visualization from figure 4.  

In addition to the per class performance metrics, the CNN also had better Cohen’s Kappa, Cross-
Entropy, and MCC values. Cohen’s Kappa is a metric that measures how closely the output of 
the classifier matches the validation set and corrects for how often the two might match by 
chance[10]. Therefore, the CNN’s higher Cohen’s Kappa score exhibits that it acts as a better 
classifier than MLP due to its output more closely matching the correct output.  

Cross-Entropy is a measure of how closely a classifier's predicted probability matches the actual 
probability of the dataset[11]. Since a smaller cross-entropy value represents a smaller difference 
between the predicted and actual probabilities, the CNN’s lower Cross-Entropy makes it a better 
classifier than MLP.     

Matthew’s correlation coefficient (MCC) is a metric that considers the true and false positive and 
negative rates to measure the correlation between a classifier's predicted classes and the actual 
classes[12]. Since the MCC of the CNN is closer to +1 than the MLP, the CNN is a better 
classifier.  

Overall, it was found that the CNN performed better than the MLP based on the metrics of 
precision, recall, f1-score, Cohen’s Kappa, Matthews Correlation Coefficient (MCC), and Cross-
Entropy. In a broader context, the performance of this CNN was similar to the CNN developed 
by the Tensorflow documentation which was able to achieve an accuracy of .916 with two 
convolution and pooling layers in addition to a single fully connected layer[13]. While the CNN 
from the Tensorflow documentation [13] had similar architecture to the CNN developed in this 
project, other CNN’s were able to achieve better results with different architectures. For 
example, Dezhic [14] was able to achieve a significantly greater accuracy of  .947 by using 
shortcut connections. Meanwhile, other MLP’s were also able to achieve better results using 
different architectures. For example, Heitorrapela [15] was able to achieve an accuracy of .89 
using three hidden layers with dropout.  

In the future, more architectures could be explored through hyperparameter optimization. 
However, such a task requires large amounts of computational power and time. Computational 
limitations had a significant impact on this current project and consequently only limited neural 
network architectures with a few hyperparameters could be considered. For example, there were 



more than 3*1020 possible combinations of hyperparameters for the simple MLP described in 
figure 5 and the 100 trials used for hyperparameter optimization were very unlikely to result in 
the most optimal results. Furthermore, even this limited search required multiple hours. This 
problem was further exacerbated for CNN which had a more complex design than the MLP and 
therefore had a much larger search space for hyperparameters. Increasing the hyperparameter 
search space further, to account for alternate architectures, would require significantly more trials 
for successful hyperparameter optimization. In order to solve this issue, hyperparameter 
optimization could be performed over the course of several days on a dedicated computer with a 
better hardware to allow for the evaluation of thousands of hyperparameters.  
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