
ECE 565 Course Project: ZCache

Abhishek Damle

Purdue University

West Lafayette, USA

adamle@purdue.edu

Sujay Pandit

Purdue University

West Lafayette, USA

pandit8@purdue.edu

Abstract

ZCache [1] aims to reduce conflict misses by improving associativity without increasing the number

of physical cache ways. We implement ZCache using GEM5 and compare its performance to set, and

skew associative caches for various numbers of cache ways, cache sizes, and SPEC 2017 benchmarks.

We identify configurations where conflict misses constitute a significant portion of cache misses and find

that ZCache reduces the miss rate by 27.06% compared to set associative caches and 1.98% compared to

skewed associative caches for these configurations. Among these configurations, ZCache also improves

IPC by 15.58% compared to set associative caches and 1.17% compared to skewed associative caches.

I. INTRODUCTION

In modern computer architectures, the main memory is orders of magnitude slower than the

processor. Caches alleviate this bottleneck by providing hierarchical storage layers between the

processor and main memory. This hierarchy is an integral part of computer architecture and

consists of memory devices that trade-off between speed and size to realize improved overall

system performance.

Cache misses play a critical role in cache and overall system performance. A cache miss

occurs when the processor attempts to access data that is not located in a level of cache, causing

the cache to fetch the data from higher-level memory such as another cache level or RAM.

Therefore, cache misses can severely degrade system performance since memory accesses are

orders of magnitude slower than the processor.

Cache misses can be classified into three categories: compulsory misses, capacity misses, and

conflict misses. Conflict misses occur in set associative caches when multiple blocks that map to

the same set are accessed in rapid succession. If the number of such blocks exceeds the number



of ways in the cache, the cache blocks must be moved into and out of the cache, increasing the

miss rate and lowering the performance of the cache.

Increasing the associativity by increasing the physical ways of a cache is a naive method to

reduce cache conflict misses. Increasing the number of physical ways increases the associativity

of the cache and thus reduces the number of conflict misses. However, the latency of cache

hits is also increased. Therefore, increasing the number of physical cache ways is not a suitable

solution for improving the overall performance of caches. ZCache aims to improve the efficiency

of cache associativity by decoupling associativity and the number of physical ways. The insight

behind ZCache’s design is that the number of replacement candidates determines associativity.

Consequently, ZCache uses a series of hash functions to boost the number of replacement

candidates, thereby increasing associativity without increasing the number of physical ways.

II. BACKGROUND AND RELATED WORK

A. Skewed Associative Caches

Typical set associative caches use a single mapping function per cache way to map an address

to the same set in each way. Therefore, address that conflict in one cache way also conflict in

all other ways. On the other hand, skewed associative caches [2] use different hash functions

per way to map an address to a set. Consequently, addresses that conflict in one way, do not

have conflicts in the other ways. Spreading out conflicts in this manner reduces conflict misses

of skewed associative caches compared to typical set associative caches [3].

B. Victim Caches

Victim caches are small, highly associative caches that temporarily store blocks evicted from

the main cache [4]. Cache blocks leave the victim cache when they are either re-referenced or

evicted. Since victim caches hold cache blocks recently evicted from the main cache, they allow

evicted blocks to be re-referenced for a short period of time, thereby reducing conflict misses.

However, victim caches increase the miss penalty and perform poorly for a large amount of

conflict misses [1].

III. IMPLEMENTATION

This section describes ZCache functionality and our implementation using GEM5. We start

with GEM5’s skewed associative cache and modify it to enable ZCache functionality.



A. Cache Access

ZCache and skew associative caches follow the same procedure for cache accesses that result

in hits/misses without replacement. Both caches determine a single block location per way using

address bits and a unique hash function per way.

ZCache misses that result in replacements must be handled in two steps. These are the steps

where ZCache differs from Skewed Associative caches. Before we dive deeper into the specific

implementation, refer to table I that explains the minor additions to the GEM5 Cache Block

structure.

TABLE I: GEM5 modification to Cache block structure

New fields Explanation

bool replace parent

This boolean field is set to True whenever a

second-level candidate is selected for replacement.

This field helps us later decide in the eviction logic that

the parent must be moved in place of this block.

CacheBlk* parent

Pointer to the parent cache block. When the second-level

replacement candidate is picked for replacement, the parent

Cache block must be moved to its place. The new block will

then move where parent block resided.

B. Replacement Candidates

In the first step, two levels of replacement candidates are generated. For an N -way cache, the

N first-level candidates are generated by hashing the address of an incoming cache block with

N hash functions. The addresses of these level 1 candidates are then each hashed with N − 1

hash functions, resulting in N(N − 1) replacement candidates. In total, this process generates

N2 replacement candidates for an incoming block to a N -Way ZCache. Fig. 1. shows how nine

replacement candidates are generated for a 3-Way ZCache using hash functions H0, H1, H2. In

our implementation, the first-level candidates are called ’parents’. When the replacement logic

chooses a second-level candidate for eviction, we set the ’replace parent’ as ’True’ and set its

parent pointer to point to the first-level Cache block whose address was used to find this block.

For example, if the replacement logic chooses ’F’ as the block to be evicted then we set its

’parent’ pointer to point to ’B’ cache block.



Fig. 1: Two levels of replacement candidates for a new cache entry, A.

C. Relocation

In the second step, the replacement candidate is evicted, and the incoming block is stored

in the cache. We use a LRU replacement policy to select the best replacement candidate. Once

the best replacement candidate is selected, we evict the candidate, relocate its parent candidate,

and move the incoming block into the cache. Fig. 2. shows the relocation process when a level

2 candidate is evicted. We implement this logic in the eviction stage by first checking if the

’replace parent’ field is ’True’ for the block to be evicted, if it is then after the block is evicted we

use the ’parent’ pointer to move the parent cache block to the location of the evicted block using

GEM5’s internal ’moveBlock’ function. This takes care of moving all the metadata. However,

the cache block structure also contains a ’data’ pointer that contains the data of the block. We

have to explicitly use ’std::memcpy’ to copy over the data from the parent cache block to its new

location. We then reset the ’replace parent’ field of the evicted cache block. Once the parent

cache block has replaced the evicted block, we then place the new incoming block in the parent’s

location.

Fig. 2: Relocations when a cache block, F, is evicted and new cache entry, A, is inserted.



IV. EXPERIMENTAL SETUP

We implement ZCache in GEM5 and compare its performance to skewed, set, and fully

associative caches across a series of SPEC 2017 benchmarks. Namely, we measure cache per-

formance using the cache miss rate and overall system performance using IPC. Table II shows

the system configurations used for comparison. We limit our ZCache implementation to L2

cache. For our comparison results, we vary the cache type (set associative, skewed associative

or fully associative), number of ways, and size of L2 caches to determine the effectiveness of

ZCache.

We also use small L1 caches to let most of the requests reach and stress the L2 cache. This

helps us better isolate and understand the impact of ZCache on system performance.

TABLE II: System Configurations

CPU x86 timing simple CPU

L1 Caches

ways: 2

tag latency: 2

data latency: 2

response latency: 2

MSHRs: 4

targets per MSHR: 20

type: set associative

L1i size: 1kB

L1d size: 1kB

L2 Cache

ways: {2,4,8}

tag latency: 20

data latency: 20

response latency: 20

MSHRs: 20

targets per MSHR: 12

write buffers: 8

type: {fully associative, set associative, skewed associative, ZCache}

size: {4kB,8kB,16kB,64kB}

SPEC Benchmarks

bwaves s,cactuBSSN s,lbm s,wrf s,cam4 s,

pop2 s,imagick s,nab s,fotonik3d s,specrand fs,

perlbench s,gcc s,mcf s,omnetpp s,xalancbmk s,

x264 s,deepsjeng s,exchange2 s,xz s



V. RESULTS AND DISCUSSION

Table III summarizes the average miss rate and percentage miss rate reduction for ZCache, set

associative, and skewed associative caches across all benchmarks. These numbers are averaged

across all cache sizes and associativity. Just by glancing at these numbers, one can make a case

for the benefits offered by ZCache. The following subsections will look at these numbers in

greater detail.

TABLE III: Miss rate impact across individual benchmarks

Benchmark name Avg MissRate ZCache Avg MissRate Skewed Avg MissRate Set

MissRate

Reduction %

ZCache/Set

MissRate

Reduction %

ZCache/Skewed

bwaves s 0.640 0.645 0.816 -21.606 -0.884

cactuBSSN s 0.256 0.257 0.288 -11.106 -0.343

cam4 s 0.413 0.409 0.441 -6.307 0.962

deepsjeng s 0.931 0.931 0.932 -0.027 0.014

exchange2 s 0.220 0.217 0.252 -12.828 1.646

fotonik3d s 0.432 0.419 0.436 -0.965 2.977

gcc s 0.380 0.377 0.407 -6.668 0.648

imagick s 0.018 0.021 0.052 -64.581 -11.122

lbm s 0.996 0.996 0.996 -0.005 0.000

mcf s 0.295 0.286 0.328 -10.327 3.065

nab s 0.376 0.365 0.400 -5.913 3.064

omnetpp s 0.294 0.294 0.314 -6.401 -0.093

perlbench s 0.462 0.462 0.488 -5.245 -0.017

pop2 s 0.345 0.344 0.370 -6.709 0.345

specrand fs 0.420 0.414 0.468 -10.293 1.337

wrf s 0.376 0.376 0.392 -4.168 -0.123

x264 s 0.364 0.364 0.374 -2.667 -0.006

xalancbmk s 0.368 0.369 0.404 -8.776 -0.378

xz s 0.842 0.842 0.846 -0.458 0.070



A. Impact of Cache Parameters on Miss Rate

We vary L2 cache parameters for several SPEC 2017 benchmarks as described in Table II,

and measure the L2 cache miss rate for 20 million instructions. The miss rates for the various

cache configurations and benchmarks are shown in Fig. 3. Please note that the associativity of

the fully associative caches does not change within a cache size and is presented in the figure

as a benchmark for other caches.

The miss rate significantly decreases across all cache configurations for most benchmarks as

the cache size increases. Increasing cache size allows the cache to hold a larger portion of the

working set, resulting in reduced capacity misses and overall miss rate. ’deepsjeng s’,’lbm s’

and ’xz s’ have very large working sets [5] and can not be accommodated by our largest caches.

Consequently, they have a miss rate of nearly one across all configurations.

Compared to varying the cache size, increasing the number of cache ways and varying the

cache type have minor impacts on the miss rate. Fully associative caches have very similar

miss rates compared to set associative caches, skewed associative caches, and ZCaches for the

majority of cache configurations. Since fully associative caches do not have conflict misses, the

similarity in miss rates between fully associative and other caches indicates that capacity and

compulsory misses constitute the bulk of the misses. Therefore varying the number of cache ways

and cache type has little effect on the miss rate since both impact conflict misses. We perform

further analysis to measure the impact of cache type on a smaller set of cache configurations and

benchmarks where capacity misses make up a significant portion of the total number of misses.

B. Impact of Cache Parameters on IPC

IPC for the various cache configurations and benchmarks from Table II are shown in Fig. 4.

The IPC across all configurations is smaller than 0.2. We use small L1 instruction and data

caches to amplify L2 cache accesses and the impact of L2 cache parameters on its miss rate.

Consequently, the high number of L1 cache misses bottleneck the IPC for all of our results. The

L2 cache configuration has a similar relationship with IPC compared to L2 cache misses, and

we perform further analysis to measure the impact of cache type.



(a) Miss rates for various 4Kb L2 Caches

(b) Miss rates for various 8Kb L2 Caches

(c) Miss rates for various 16Kb L2 Caches

(d) Miss rates for various 64Kb L2 Caches

Fig. 3: Miss Rates for Various L2 Caches while Running SPEC 2017 Benchmarks



(a) IPC for various 4Kb L2 Caches

(b) IPC for various 8Kb L2 Caches

(c) IPC for various 16Kb L2 Caches

(d) IPC for various 64Kb L2 Caches

Fig. 4: IPC for Various L2 Caches while Running SPEC 2017 Benchmarks



C. Impact of ZCache on Conflict Misses

In the above sub-sections, we looked at the impact of ZCache across all benchmarks with

varying cache sizes and ways. However, to really understand the difference we need to looked

more closely at the results.

The miss rates for fully associative and other types of caches are very similar for a large

number of our results, indicating that conflict misses have little to no contribution to the overall

miss rate. We extract a subset from our results where fully associative cache performs at least

5% better than set associative cache to observe cases where conflict misses have a significant

contribution to the miss rate. Table VII in Appendix contains all cases that satisfy this condition

with miss rate and IPC numbers for all four cache types. Figure 5 shows L2 cache miss rate of

two such cases.

(a) L2 Miss Rate vs Cache type: Imagick

CacheSize: 4kB Associativity 2

(b) L2 Miss Rate vs Cache type: Nab

CacheSize: 8kB Associativity 4

Fig. 5: Impact of Conflict Misses

The tables below summarize cache performance in the selected subset. For these cases,

we can see a clear difference in the performance benefits Z-Cache offers over set associative

caches. ZCache reduces miss rate by providing more replacement candidates. However, skewed

associative caches perform almost equally better. Skewed associative caches significantly reduce

the number of conflict misses such that they constitute a small minority of the overall miss rate,

as exhibited by the similarity in miss rates between fully and skewed associative caches. Per

Amdahl’s Law, reducing the number of conflict misses further with ZCache only has a minor

impact on the overall miss rate.



TABLE IV: Cache impact on the selected cases

Cache Type Avg. IPC Avg. MissRate

Set Associative 0.079 0.421

Skewed Associative 0.090 0.313

ZCache 0.091 0.307

Fully Associative 0.094 0.288

TABLE V: Z-Cache comparison with Skewed and Set Associative caches

Cache Type IPC increase Miss Rate Reduction

ZCache v/s Set Associative 15.58% 27.06%

ZCache v/s Skewed Associative 1.17% 1.98%

TABLE VI: Miss rate impact across individual benchmarks (Conflict Misses)

Benchmark name Avg MissRate ZCache Avg MissRate Skewed Avg MissRate Set

MissRate

Reduction %

ZCache/Set

MissRate

Reduction %

ZCache/Skewed

bwaves s 0.642 0.650 0.985 -34.875 -1.296

cactuBSSN s 0.334 0.338 0.392 -14.733 -1.195

cam4 s 0.276 0.272 0.353 -21.867 1.435

exchange2 s 0.151 0.151 0.243 -37.778 -0.016

gcc s 0.294 0.296 0.339 -13.466 -0.651

imagick s 0.025 0.034 0.140 -82.056 -26.110

mcf s 0.038 0.052 0.171 -77.990 -27.443

nab s 0.436 0.447 0.508 -14.117 -2.383

omnetpp s 0.289 0.297 0.331 -12.590 -2.705

perlbench s 0.362 0.367 0.404 -10.441 -1.270

pop2 s 0.344 0.345 0.388 -11.428 -0.409

specrand fs 0.101 0.107 0.291 -65.398 -5.551

wrf s 0.286 0.300 0.329 -12.976 -4.384

x264 s 0.356 0.369 0.399 -10.818 -3.586

xalancbmk s 0.378 0.383 0.433 -12.603 -1.273



VI. CONCLUSION

In this work, we implement ZCache and analyze its impact on cache and system performance

while running SPEC2017 benchmarks. ZCache seeks to improve performance by providing

more replacement candidates than set associative caches. We implement ZCache in GEM5 for

TimingSimpleCPU and verify its correctness for ARM and X86. We collect results for several

benchmarks with varying cache sizes and number of ways to study the impact of ZCache. Firstly,

we notice that specific benchmarks ’deepsjeng s’,’lbm s’ and ’xz s’ show high miss rate across

all cache types and sizes (including fully associative caches) indicating that these benchmarks

have bigger working set and memory footprint which is confirmed by [5]. At the surface level, it

seems that ZCache has a similar performance to set associative caches. However, when we look

closely at cases with more conflict misses, we notice the true impact of ZCache, which reduces

the miss rate by ∼27% compared to set associative caches with the same number of ways and

cache size. Although ZCache significantly improves miss rate compared to set associative caches,

it only offers a 1.98% improvement compared to skewed associative caches. We attribute this to

the diminishing impact of reducing conflict misses on the overall miss rate per Amdahl’s law.

REFERENCES

[1] D. Sanchez and C. Kozyrakis, “The zcache: Decoupling ways and associativity,” in 2010 43rd Annual IEEE/ACM

International Symposium on Microarchitecture, 2010, pp. 187–198.

[2] A. Seznec, “A case for two-way skewed-associative caches,” in Proceedings of the 20th Annual International Symposium

on Computer Architecture, ser. ISCA ’93. New York, NY, USA: Association for Computing Machinery, 1993, p. 169–178.

[Online]. Available: https://doi.org/10.1145/165123.165152

[3] F. Bodin and A. Seznec, “Skewed associativity enhances performance predictability,” in Proceedings of the 22nd Annual

International Symposium on Computer Architecture, ser. ISCA ’95. New York, NY, USA: Association for Computing

Machinery, 1995, p. 265–274. [Online]. Available: https://doi.org/10.1145/223982.224437

[4] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a small fully-associative cache

and prefetch buffers,” in Proceedings of the 17th Annual International Symposium on Computer Architecture, ser.

ISCA ’90. New York, NY, USA: Association for Computing Machinery, 1990, p. 364–373. [Online]. Available:

https://doi.org/10.1145/325164.325162

[5] S. Singh and M. Awasthi, “Memory centric characterization and analysis of spec cpu2017 suite,” in Proceedings of

the 2019 ACM/SPEC International Conference on Performance Engineering, ser. ICPE ’19. New York, NY, USA:

Association for Computing Machinery, 2019, p. 285–292. [Online]. Available: https://doi.org/10.1145/3297663.3310311



VII. APPENDIX

A. Conflict Misses

TABLE VII: All cases with 5% higher conflict miss in set-associative caches as compared to

fully-associative caches

Benchmark

name

CacheSize

(kB)

Cache

Associativity

MissRate

Fully

MissRate

ZCache

MissRate

Skewed

MissRate

Set

IPC

Fully

IPC

ZCache

IPC

Skewed

IPC

Set

bwaves s 4 2 0.641 0.647 0.662 0.988 0.025 0.025 0.025 0.021

bwaves s 4 4 0.641 0.641 0.644 0.991 0.025 0.025 0.025 0.021

bwaves s 8 2 0.638 0.654 0.676 0.984 0.025 0.025 0.024 0.021

bwaves s 8 4 0.638 0.638 0.638 0.985 0.025 0.025 0.025 0.021

bwaves s 16 2 0.635 0.636 0.646 0.982 0.025 0.025 0.025 0.021

bwaves s 16 4 0.635 0.635 0.635 0.982 0.025 0.025 0.025 0.021

cactuBSSN s 4 2 0.541 0.537 0.535 0.596 0.063 0.063 0.064 0.060

cactuBSSN s 8 2 0.297 0.329 0.336 0.378 0.086 0.081 0.081 0.076

cactuBSSN s 8 4 0.297 0.298 0.302 0.353 0.086 0.085 0.085 0.079

cactuBSSN s 16 2 0.157 0.172 0.180 0.241 0.107 0.104 0.103 0.093

cam4 s 16 2 0.258 0.301 0.294 0.384 0.099 0.092 0.093 0.083

cam4 s 16 4 0.258 0.251 0.250 0.323 0.099 0.100 0.100 0.089

exchange2 s 8 2 0.165 0.251 0.254 0.319 0.145 0.128 0.129 0.119

exchange2 s 8 4 0.165 0.159 0.160 0.294 0.145 0.146 0.146 0.122

exchange2 s 8 8 0.165 0.162 0.153 0.254 0.145 0.146 0.147 0.128

exchange2 s 16 2 0.025 0.032 0.037 0.103 0.181 0.179 0.178 0.159

gcc s 8 2 0.466 0.500 0.500 0.530 0.056 0.053 0.053 0.052

gcc s 16 2 0.283 0.305 0.309 0.358 0.072 0.069 0.069 0.064

gcc s 64 2 0.065 0.076 0.078 0.130 0.112 0.109 0.108 0.096

imagick s 4 2 0.026 0.039 0.063 0.178 0.136 0.131 0.124 0.099

imagick s 8 2 0.019 0.020 0.023 0.126 0.138 0.138 0.137 0.109

imagick s 16 2 0.016 0.016 0.016 0.115 0.139 0.139 0.139 0.111

mcf s 16 2 0.032 0.048 0.082 0.219 0.118 0.115 0.105 0.083

mcf s 16 4 0.032 0.033 0.040 0.155 0.118 0.118 0.118 0.091

mcf s 16 8 0.032 0.032 0.033 0.139 0.118 0.118 0.118 0.093

nab s 8 2 0.418 0.465 0.480 0.542 0.071 0.067 0.065 0.061

nab s 8 4 0.418 0.424 0.439 0.505 0.071 0.070 0.069 0.064

nab s 8 8 0.418 0.420 0.421 0.477 0.071 0.071 0.070 0.065

omnetpp s 8 2 0.317 0.355 0.366 0.388 0.087 0.082 0.081 0.079

omnetpp s 8 4 0.317 0.321 0.328 0.371 0.087 0.086 0.085 0.081

omnetpp s 16 2 0.167 0.192 0.198 0.234 0.110 0.105 0.104 0.098

perlbench s 8 2 0.562 0.581 0.584 0.620 0.049 0.048 0.047 0.046

perlbench s 64 2 0.115 0.143 0.149 0.189 0.097 0.091 0.090 0.083

pop2 s 8 2 0.414 0.430 0.429 0.470 0.082 0.080 0.080 0.076

pop2 s 16 2 0.240 0.257 0.261 0.306 0.103 0.100 0.099 0.093

specrand fs 16 2 0.022 0.258 0.247 0.341 0.157 0.101 0.103 0.091

specrand fs 16 4 0.022 0.023 0.047 0.298 0.157 0.156 0.147 0.096

specrand fs 16 8 0.022 0.021 0.025 0.233 0.157 0.157 0.155 0.105

wrf s 16 2 0.262 0.286 0.300 0.329 0.113 0.109 0.107 0.103

x264 s 8 2 0.330 0.378 0.393 0.406 0.095 0.089 0.088 0.086

x264 s 8 4 0.330 0.334 0.346 0.393 0.095 0.094 0.093 0.088

xalancbmk s 4 2 0.608 0.618 0.621 0.676 0.056 0.056 0.056 0.053

xalancbmk s 8 2 0.450 0.464 0.468 0.519 0.067 0.066 0.065 0.062

xalancbmk s 16 2 0.330 0.349 0.352 0.396 0.078 0.076 0.076 0.072

xalancbmk s 64 2 0.063 0.082 0.091 0.141 0.129 0.123 0.121 0.108


