ECE 565 Course Project: ZCache

Abhishek Damle Sujay Pandit
Purdue University Purdue University
West Lafayette, USA West Lafayette, USA
adamle @purdue.edu pandit8 @purdue.edu
Abstract

ZCache [1] aims to reduce conflict misses by improving associativity without increasing the number
of physical cache ways. We implement ZCache using GEMS5 and compare its performance to set, and
skew associative caches for various numbers of cache ways, cache sizes, and SPEC 2017 benchmarks.
We identify configurations where conflict misses constitute a significant portion of cache misses and find
that ZCache reduces the miss rate by 27.06% compared to set associative caches and 1.98% compared to
skewed associative caches for these configurations. Among these configurations, ZCache also improves

IPC by 15.58% compared to set associative caches and 1.17% compared to skewed associative caches.

I. INTRODUCTION

In modern computer architectures, the main memory is orders of magnitude slower than the
processor. Caches alleviate this bottleneck by providing hierarchical storage layers between the
processor and main memory. This hierarchy is an integral part of computer architecture and
consists of memory devices that trade-off between speed and size to realize improved overall
system performance.

Cache misses play a critical role in cache and overall system performance. A cache miss
occurs when the processor attempts to access data that is not located in a level of cache, causing
the cache to fetch the data from higher-level memory such as another cache level or RAM.
Therefore, cache misses can severely degrade system performance since memory accesses are
orders of magnitude slower than the processor.

Cache misses can be classified into three categories: compulsory misses, capacity misses, and
conflict misses. Conflict misses occur in set associative caches when multiple blocks that map to

the same set are accessed in rapid succession. If the number of such blocks exceeds the number

of ways in the cache, the cache blocks must be moved into and out of the cache, increasing the
miss rate and lowering the performance of the cache.

Increasing the associativity by increasing the physical ways of a cache is a naive method to
reduce cache conflict misses. Increasing the number of physical ways increases the associativity
of the cache and thus reduces the number of conflict misses. However, the latency of cache
hits is also increased. Therefore, increasing the number of physical cache ways is not a suitable
solution for improving the overall performance of caches. ZCache aims to improve the efficiency
of cache associativity by decoupling associativity and the number of physical ways. The insight
behind ZCache’s design is that the number of replacement candidates determines associativity.
Consequently, ZCache uses a series of hash functions to boost the number of replacement

candidates, thereby increasing associativity without increasing the number of physical ways.

II. BACKGROUND AND RELATED WORK
A. Skewed Associative Caches

Typical set associative caches use a single mapping function per cache way to map an address
to the same set in each way. Therefore, address that conflict in one cache way also conflict in
all other ways. On the other hand, skewed associative caches [2] use different hash functions
per way to map an address to a set. Consequently, addresses that conflict in one way, do not
have conflicts in the other ways. Spreading out conflicts in this manner reduces conflict misses

of skewed associative caches compared to typical set associative caches [3].

B. Victim Caches

Victim caches are small, highly associative caches that temporarily store blocks evicted from
the main cache [4]. Cache blocks leave the victim cache when they are either re-referenced or
evicted. Since victim caches hold cache blocks recently evicted from the main cache, they allow
evicted blocks to be re-referenced for a short period of time, thereby reducing conflict misses.
However, victim caches increase the miss penalty and perform poorly for a large amount of

conflict misses [1].

III. IMPLEMENTATION

This section describes ZCache functionality and our implementation using GEMS5. We start

with GEMS5’s skewed associative cache and modify it to enable ZCache functionality.

A. Cache Access

ZCache and skew associative caches follow the same procedure for cache accesses that result
in hits/misses without replacement. Both caches determine a single block location per way using
address bits and a unique hash function per way.

ZCache misses that result in replacements must be handled in two steps. These are the steps
where ZCache differs from Skewed Associative caches. Before we dive deeper into the specific
implementation, refer to table I that explains the minor additions to the GEMS Cache Block

structure.

TABLE I: GEMS5 modification to Cache block structure

New fields Explanation

This boolean field is set to True whenever a

second-level candidate is selected for replacement.
bool replace_parent
This field helps us later decide in the eviction logic that

the parent must be moved in place of this block.

Pointer to the parent cache block. When the second-level

replacement candidate is picked for replacement, the parent
CacheBIk* parent

Cache block must be moved to its place. The new block will

then move where parent block resided.

B. Replacement Candidates

In the first step, two levels of replacement candidates are generated. For an N-way cache, the
N first-level candidates are generated by hashing the address of an incoming cache block with
N hash functions. The addresses of these level 1 candidates are then each hashed with N — 1
hash functions, resulting in N(N — 1) replacement candidates. In total, this process generates
N? replacement candidates for an incoming block to a N-Way ZCache. Fig. 1. shows how nine
replacement candidates are generated for a 3-Way ZCache using hash functions H0, 1, H2. In
our implementation, the first-level candidates are called ’parents’. When the replacement logic
chooses a second-level candidate for eviction, we set the ‘replace_parent’ as *True’ and set its
parent pointer to point to the first-level Cache block whose address was used to find this block.
For example, if the replacement logic chooses 'F’ as the block to be evicted then we set its

‘parent’ pointer to point to B’ cache block.

Level 1

B C D Candidates
7N VR VN
E E @ H | J c::c\i/izlafes

Fig. 1: Two levels of replacement candidates for a new cache entry, A.

C. Relocation

In the second step, the replacement candidate is evicted, and the incoming block is stored
in the cache. We use a LRU replacement policy to select the best replacement candidate. Once
the best replacement candidate is selected, we evict the candidate, relocate its parent candidate,
and move the incoming block into the cache. Fig. 2. shows the relocation process when a level
2 candidate is evicted. We implement this logic in the eviction stage by first checking if the
‘replace_parent’ field is *True’ for the block to be evicted, if it is then after the block is evicted we
use the ’parent’ pointer to move the parent cache block to the location of the evicted block using
GEMS’s internal *moveBlock’ function. This takes care of moving all the metadata. However,
the cache block structure also contains a ’data’ pointer that contains the data of the block. We
have to explicitly use ’std::memcpy’ to copy over the data from the parent cache block to its new
location. We then reset the ’replace_parent’ field of the evicted cache block. Once the parent
cache block has replaced the evicted block, we then place the new incoming block in the parent’s

location.

Level 1

A C D Candidates
7 (X SN VR
Level 2
E B G H | J Candidates

Fig. 2: Relocations when a cache block, F, is evicted and new cache entry, A, is inserted.

IV. EXPERIMENTAL SETUP

We implement ZCache in GEMS and compare its performance to skewed, set, and fully
associative caches across a series of SPEC 2017 benchmarks. Namely, we measure cache per-
formance using the cache miss rate and overall system performance using IPC. Table II shows
the system configurations used for comparison. We limit our ZCache implementation to L2
cache. For our comparison results, we vary the cache type (set associative, skewed associative
or fully associative), number of ways, and size of L2 caches to determine the effectiveness of
ZCache.

We also use small L1 caches to let most of the requests reach and stress the L2 cache. This

helps us better isolate and understand the impact of ZCache on system performance.

TABLE II: System Configurations

CPU x86 timing simple CPU

ways: 2
tag latency: 2
data latency: 2
response latency: 2
L1 Caches MSHRs: 4
targets per MSHR: 20
type: set associative
L1i size: 1kB
L1d size: 1kB
ways: {2,4,8}

tag latency: 20
data latency: 20
response latency: 20
L2 Cache MSHRs: 20
targets per MSHR: 12
write buffers: 8
type: {fully associative, set associative, skewed associative, ZCache}

size: {4kB,8kB,16kB,64kB}

bwaves_s,cactuBSSN_s,Ibm_s,wrf_s,cam4_s,

pop2_s,imagick_s,nab_s,fotonik3d_s,specrand_fs,
SPEC Benchmarks
perlbench_s,gcc_s,mcf_s,omnetpp_s,xalancbmk_s,

x264_s,deepsjeng_s,exchange2_s,xz_s

V. RESULTS AND DISCUSSION

Table III summarizes the average miss rate and percentage miss rate reduction for ZCache, set

associative, and skewed associative caches across all benchmarks. These numbers are averaged

across all cache sizes and associativity. Just by glancing at these numbers, one can make a case

for the benefits offered by ZCache. The following subsections will look at these numbers in

greater detail.

TABLE III: Miss rate impact across individual benchmarks

Benchmark_name

Avg_MissRate_ZCache

Avg_MissRate_Skewed

Avg_MissRate_Set

MissRate

Reduction %

MissRate

Reduction %

ZCache/Set | ZCache/Skewed

bwaves_s 0.640 0.645 0.816 -21.606 -0.884
cactuBSSN_s 0.256 0.257 0.288 -11.106 -0.343
cam4_s 0.413 0.409 0.441 -6.307 0.962
deepsjeng_s 0.931 0.931 0.932 -0.027 0.014
exchange2_s 0.220 0.217 0.252 -12.828 1.646
fotonik3d_s 0.432 0.419 0.436 -0.965 2.977
gcc_s 0.380 0.377 0.407 -6.668 0.648

imagick_s 0.018 0.021 0.052 -64.581 -11.122
Ibm_s 0.996 0.996 0.996 -0.005 0.000
mcf_s 0.295 0.286 0.328 -10.327 3.065
nab_s 0.376 0.365 0.400 -5.913 3.064
omnetpp_s 0.294 0.294 0.314 -6.401 -0.093
perlbench_s 0.462 0.462 0.488 -5.245 -0.017
pop2_s 0.345 0.344 0.370 -6.709 0.345
specrand_fs 0.420 0.414 0.468 -10.293 1.337
wrf_s 0.376 0.376 0.392 -4.168 -0.123
X264 _s 0.364 0.364 0.374 -2.667 -0.006
xalancbmk_s 0.368 0.369 0.404 -8.776 -0.378
XZ_$ 0.842 0.842 0.846 -0.458 0.070

A. Impact of Cache Parameters on Miss Rate

We vary L2 cache parameters for several SPEC 2017 benchmarks as described in Table II,
and measure the L2 cache miss rate for 20 million instructions. The miss rates for the various
cache configurations and benchmarks are shown in Fig. 3. Please note that the associativity of
the fully associative caches does not change within a cache size and is presented in the figure
as a benchmark for other caches.

The miss rate significantly decreases across all cache configurations for most benchmarks as
the cache size increases. Increasing cache size allows the cache to hold a larger portion of the
working set, resulting in reduced capacity misses and overall miss rate. ’deepsjeng_s’,’ lbm_s’
and ’xz_s’ have very large working sets [5] and can not be accommodated by our largest caches.
Consequently, they have a miss rate of nearly one across all configurations.

Compared to varying the cache size, increasing the number of cache ways and varying the
cache type have minor impacts on the miss rate. Fully associative caches have very similar
miss rates compared to set associative caches, skewed associative caches, and ZCaches for the
majority of cache configurations. Since fully associative caches do not have conflict misses, the
similarity in miss rates between fully associative and other caches indicates that capacity and
compulsory misses constitute the bulk of the misses. Therefore varying the number of cache ways
and cache type has little effect on the miss rate since both impact conflict misses. We perform
further analysis to measure the impact of cache type on a smaller set of cache configurations and

benchmarks where capacity misses make up a significant portion of the total number of misses.

B. Impact of Cache Parameters on IPC

IPC for the various cache configurations and benchmarks from Table II are shown in Fig. 4.
The IPC across all configurations is smaller than 0.2. We use small L1 instruction and data
caches to amplify L2 cache accesses and the impact of L2 cache parameters on its miss rate.
Consequently, the high number of L1 cache misses bottleneck the IPC for all of our results. The
L2 cache configuration has a similar relationship with IPC compared to L2 cache misses, and

we perform further analysis to measure the impact of cache type.

(Cache Ways: 2)

cooH
rome

0.2
0.0

[
E o (Cache Ways: 4)
208
= 0.6
¢ 0.4
G 0.2
0 0.0
h |
(Cache Ways: 8)
- fully
. set
mm skewed
mmm zcache
6 5 o % 2 i® a2 2 52 52
S G $ I B S R ST W gl
e R % o B S &
& S s e &
(a) Miss rates for various 4Kb L2 Caches
(Cache Ways: 2)
2
5 iia (Cache Ways: 4)
208
= 0.6
¢ 0.4
G 0.2
v 0.0
5
(Cache Ways: 8)
;—g . fully
0.6 m set
0.4 m skewed
glzl BN zcache
) 4 6 6 .6 &6 6 o 6 % .6 6 6 &
db"";,‘\ ‘0 <~°’ oq,; ,5&; (f"’ & ,{0 /&)&QI&QQ/o““/ Qq,,(‘ b “(&, > (b‘-’ P
S 4 éﬂ@@ & & o ° ’d & &
. @
& & & L N g ¢ e "?\
(b) Miss rates for various 8Kb L2 Caches
(Cache ways: 2)
g
k] 5 (Cache Ways: 4)
8o
= 0.
2 0.
5o
So.
h|
(Cache Ways: 8)
;-‘; - fully
0.6 - set
0.4 m skewed
g‘z) B zcache
-c,:"\:' o,zq, b (’q. 4 /Q/ {\ u./v./_ﬂ,/
d‘,ﬁ & ‘,\“ e“ q’ & ' 0@" o & & £ o" QoQ R
g 9 X0 & b <
& &F p A f‘@ 4 ¢°
(c) Miss rates for various 16Kb L2 Caches
(Cache Ways: 2)
]
2 10 (Cache ways: 4)
fos
= 0.6
L 0.4
S 0.2
3 0.0 - ——
o
(Cache Ways: 8)
‘1'-3 - fully
0.6 m set
0.4 mm skewed
g;‘; B zcache
e s 5 5 &
G/ ‘\ h; g’ q,.; 3’ , ‘(\/ , Qr &7 s o -
e"qa & ‘?@Qa\,o S o&.p g&&’ &° ‘(& (a Q(\ve e =~ - K #"o‘y& +
& $Pd§ & «§ f‘$ &é &

(d) Miss rates for various 64Kb L2 Caches

Fig. 3: Miss Rates for Various L2 Caches while Running SPEC 2017 Benchmarks

0.15 Cache Ways:2

0.10
0.05
0.00

0.15 Cache Ways:4

0.10
0.05
0.00

IPC

Cache Ways:8

0.15
0.10
0.05

fully
set
skewed
zcache

0.00
'2
4991 ("\/‘o&' “o‘, q,f '56'& (‘“ & Q
o 7 o o & ¥ q"
o s < +&o"° o »\«‘ & Qo(\"’p %Qa" *9\00
(a) IPC for various 4Kb L2 Caches

Cache Ways:2

9 i
“6;1}6&/ ﬂ-r _p.r

0.15
0.10
0.05
0.00

Cache Ways:4

0.15
0.10
~ 0.05
0.00
Cache Ways:8

fully
set
skewed
zcache

9 o L L o % L

daq’ ',‘\, ‘oou oo, v’ éaf "g";g\" , s 665; &v;'&i;o Qq, b, “(u.p 6’" ’(., o

x> o' & & &

& & o“'& & N o (P‘\ @ -0?\’
(b) IPC for various 8Kb L2 Caches

Cache Ways:2

0.15
0.10
0.05
0.00

Cache Ways:4

0.15
0.10
0.05
0.00

IPC

Cache Ways:8

fully
set
skewed
zcache

0.15
0.10
0.05
0.00

9 L
49";9"‘3 ‘P\“ e“g;q”’"vf'b o 0@‘& ‘o '6“ é‘ ,'&Q’e" Qoa' Pl -z“k .p,"w "’ 7
d‘o‘:& zP“Q A o de 4 +?°°
(c) IPC for various 16Kb L2 Caches

Cache Ways:2

0.15
0.10
0.05
0.00

Cache Ways:4

0.15
£ 0.10
0.05
0.00

Cache Ways:8

fully
set
skewed
zcache

0.15
0.10
0.05
0.00

o
g 2 ‘-"\ \¢°

& L °¢°’ c‘ ’ o
o d’"& bo-ﬁ# & « P Q,é 41»‘
(d) IPC for various 64Kb L2 Caches

% © 9 9 Lo o
2 59 T 'y 2 b SRS IS
q, ‘53 ‘f' é“' (9 '&QQ & d‘b _’/}"b PRl
o R ,0"
4

Fig. 4: IPC for Various L2 Caches while Running SPEC 2017 Benchmarks

C. Impact of ZCache on Conflict Misses

In the above sub-sections, we looked at the impact of ZCache across all benchmarks with
varying cache sizes and ways. However, to really understand the difference we need to looked
more closely at the results.

The miss rates for fully associative and other types of caches are very similar for a large
number of our results, indicating that conflict misses have little to no contribution to the overall
miss rate. We extract a subset from our results where fully associative cache performs at least
5% better than set associative cache to observe cases where conflict misses have a significant
contribution to the miss rate. Table VII in Appendix contains all cases that satisfy this condition
with miss rate and IPC numbers for all four cache types. Figure 5 shows L2 cache miss rate of

two such cases.

4
n

0.175

0.150

[4
S

0.125

- fully - fully
e set
. skewed

m zcache

4
w

0.100

]|
gﬂ
H

0.075 m zcache

L2 Cache Miss Rate
°
N

0.050

14
B

0.025

e
°

0.000

nab_s
Benchmark

(a) L2 Miss Rate vs Cache type: Imagick (b) L2 Miss Rate vs Cache type: Nab
CacheSize: 4kB Associativity 2 CacheSize: 8kB Associativity 4

Fig. 5: Impact of Conflict Misses

The tables below summarize cache performance in the selected subset. For these cases,
we can see a clear difference in the performance benefits Z-Cache offers over set associative
caches. ZCache reduces miss rate by providing more replacement candidates. However, skewed
associative caches perform almost equally better. Skewed associative caches significantly reduce
the number of conflict misses such that they constitute a small minority of the overall miss rate,
as exhibited by the similarity in miss rates between fully and skewed associative caches. Per
Amdahl’s Law, reducing the number of conflict misses further with ZCache only has a minor

impact on the overall miss rate.

TABLE V: Z-Cache comparison with Skewed and Set Associative caches

TABLE IV: Cache impact on the selected cases

Cache Type Avg. IPC | Avg. MissRate
Set Associative 0.079 0.421
Skewed Associative | 0.090 0.313
ZCache 0.091 0.307
Fully Associative 0.094 0.288

Cache Type IPC increase | Miss Rate Reduction
ZCache v/s Set Associative 15.58% 27.06%
ZCache v/s Skewed Associative | 1.17% 1.98%

TABLE VI: Miss rate impact across individual benchmarks (Conflict Misses)

MissRate MissRate
Benchmark_name | Avg_MissRate_ZCache | Avg_MissRate_Skewed | Avg_MissRate_Set | Reduction % | Reduction %

ZCache/Set ZCache/Skewed
bwaves_s 0.642 0.650 0.985 -34.875 -1.296
cactuBSSN_s 0.334 0.338 0.392 -14.733 -1.195
cam4_s 0.276 0.272 0.353 -21.867 1.435
exchange?_s 0.151 0.151 0.243 -37.778 -0.016
gcc_s 0.294 0.296 0.339 -13.466 -0.651
imagick_s 0.025 0.034 0.140 -82.056 -26.110
mcf_s 0.038 0.052 0.171 -77.990 -27.443
nab_s 0.436 0.447 0.508 -14.117 -2.383
omnetpp_s 0.289 0.297 0.331 -12.590 -2.705
perlbench_s 0.362 0.367 0.404 -10.441 -1.270
pop2_s 0.344 0.345 0.388 -11.428 -0.409
specrand_fs 0.101 0.107 0.291 -65.398 -5.551
wrf_s 0.286 0.300 0.329 -12.976 -4.384
X264 _s 0.356 0.369 0.399 -10.818 -3.586
xalancbmk_s 0.378 0.383 0.433 -12.603 -1.273

VI. CONCLUSION

In this work, we implement ZCache and analyze its impact on cache and system performance
while running SPEC2017 benchmarks. ZCache seeks to improve performance by providing
more replacement candidates than set associative caches. We implement ZCache in GEMS5 for
TimingSimpleCPU and verify its correctness for ARM and X86. We collect results for several
benchmarks with varying cache sizes and number of ways to study the impact of ZCache. Firstly,
we notice that specific benchmarks deepsjeng_s’,’lbm_s’ and ’xz_s’ show high miss rate across
all cache types and sizes (including fully associative caches) indicating that these benchmarks
have bigger working set and memory footprint which is confirmed by [5]. At the surface level, it
seems that ZCache has a similar performance to set associative caches. However, when we look
closely at cases with more conflict misses, we notice the true impact of ZCache, which reduces
the miss rate by ~27% compared to set associative caches with the same number of ways and
cache size. Although ZCache significantly improves miss rate compared to set associative caches,
it only offers a 1.98% improvement compared to skewed associative caches. We attribute this to

the diminishing impact of reducing conflict misses on the overall miss rate per Amdahl’s law.

REFERENCES

[1] D. Sanchez and C. Kozyrakis, “The zcache: Decoupling ways and associativity,” in 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, 2010, pp. 187-198.

[2] A. Seznec, “A case for two-way skewed-associative caches,” in Proceedings of the 20th Annual International Symposium
on Computer Architecture, ser. ISCA *93. New York, NY, USA: Association for Computing Machinery, 1993, p. 169-178.
[Online]. Available: https://doi.org/10.1145/165123.165152

[3] E Bodin and A. Seznec, “Skewed associativity enhances performance predictability,” in Proceedings of the 22nd Annual
International Symposium on Computer Architecture, ser. ISCA ’95. New York, NY, USA: Association for Computing
Machinery, 1995, p. 265-274. [Online]. Available: https://doi.org/10.1145/223982.224437

[4] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a small fully-associative cache
and prefetch buffers,” in Proceedings of the 17th Annual International Symposium on Computer Architecture, ser.
ISCA °90. New York, NY, USA: Association for Computing Machinery, 1990, p. 364-373. [Online]. Available:
https://doi.org/10.1145/325164.325162

[5] S. Singh and M. Awasthi, “Memory centric characterization and analysis of spec cpu2017 suite,” in Proceedings of
the 2019 ACM/SPEC International Conference on Performance Engineering, ser. ICPE °19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 285-292. [Online]. Available: https://doi.org/10.1145/3297663.3310311

VII. APPENDIX

A. Conflict Misses

TABLE VII: All cases with 5% higher conflict miss in set-associative caches as compared to

fully-associative caches

Benchmark CacheSize | Cache MissRate | MissRate | MissRate | MissRate | IPC IPC 1PC IPC

name (kB) Associativity | _Fully _ZCache | _Skewed | _Set _Fully | _ZCache | _Skewed | _Set

bwaves_s 4 2 0.641 0.647 0.662 0.988 0.025 | 0.025 0.025 0.021
bwaves_s 4 4 0.641 0.641 0.644 0.991 0.025 0.025 0.025 0.021
bwaves_s 8 2 0.638 0.654 0.676 0.984 0.025 | 0.025 0.024 0.021
bwaves_s 8 4 0.638 0.638 0.638 0.985 0.025 0.025 0.025 0.021
bwaves_s 16 2 0.635 0.636 0.646 0.982 0.025 | 0.025 0.025 0.021
bwaves_s 16 4 0.635 0.635 0.635 0.982 0.025 | 0.025 0.025 0.021
cactuBSSN_s | 4 2 0.541 0.537 0.535 0.596 0.063 | 0.063 0.064 0.060
cactuBSSN_s | 8 2 0.297 0.329 0.336 0.378 0.086 | 0.081 0.081 0.076
cactuBSSN_s | 8 4 0.297 0.298 0.302 0.353 0.086 0.085 0.085 0.079
cactuBSSN_s | 16 2 0.157 0.172 0.180 0.241 0.107 | 0.104 0.103 0.093
cam4_s 16 2 0.258 0.301 0.294 0.384 0.099 0.092 0.093 0.083
cam4_s 16 4 0.258 0.251 0.250 0.323 0.099 | 0.100 0.100 0.089
exchange2 s | 8 2 0.165 0.251 0.254 0.319 0.145 | 0.128 0.129 0.119
exchange2 s | 8 4 0.165 0.159 0.160 0.294 0.145 | 0.146 0.146 0.122
exchange2 s | 8 8 0.165 0.162 0.153 0.254 0.145 | 0.146 0.147 0.128
exchange2_s 16 2 0.025 0.032 0.037 0.103 0.181 0.179 0.178 0.159
gee_s 8 2 0.466 0.500 0.500 0.530 0.056 | 0.053 0.053 0.052
gee_s 16 2 0.283 0.305 0.309 0.358 0.072 | 0.069 0.069 0.064
gee_s 64 2 0.065 0.076 0.078 0.130 0.112 | 0.109 0.108 0.096
imagick_s 4 2 0.026 0.039 0.063 0.178 0.136 | 0.131 0.124 0.099
imagick_s 2 0.019 0.020 0.023 0.126 0.138 | 0.138 0.137 0.109
imagick_s 16 2 0.016 0.016 0.016 0.115 0.139 | 0.139 0.139 0.111
mcf_s 16 2 0.032 0.048 0.082 0.219 0.118 0.115 0.105 0.083
mef_s 16 4 0.032 0.033 0.040 0.155 0.118 | 0.118 0.118 0.091
mcf_s 16 8 0.032 0.032 0.033 0.139 0.118 0.118 0.118 0.093
nab_s 8 2 0.418 0.465 0.480 0.542 0.071 | 0.067 0.065 0.061
nab_s 8 4 0.418 0.424 0.439 0.505 0.071 | 0.070 0.069 0.064
nab_s 8 8 0.418 0.420 0.421 0.477 0.071 0.071 0.070 0.065
omnetpp_s 8 2 0.317 0.355 0.366 0.388 0.087 | 0.082 0.081 0.079
omnetpp_s 8 4 0.317 0.321 0.328 0.371 0.087 0.086 0.085 0.081
omnetpp_s 16 2 0.167 0.192 0.198 0.234 0.110 | 0.105 0.104 0.098
perlbench_s 8 2 0.562 0.581 0.584 0.620 0.049 | 0.048 0.047 0.046
perlbench_s 64 2 0.115 0.143 0.149 0.189 0.097 | 0.091 0.090 0.083
pop2_s 8 2 0.414 0.430 0.429 0.470 0.082 | 0.080 0.080 0.076
pop2_s 16 2 0.240 0.257 0.261 0.306 0.103 0.100 0.099 0.093
specrand_fs 16 2 0.022 0.258 0.247 0.341 0.157 | 0.101 0.103 0.091
specrand_fs 16 4 0.022 0.023 0.047 0.298 0.157 0.156 0.147 0.096
specrand_fs 16 8 0.022 0.021 0.025 0.233 0.157 | 0.157 0.155 0.105
wrf_s 16 2 0.262 0.286 0.300 0.329 0.113 | 0.109 0.107 0.103
x264_s 8 2 0.330 0.378 0.393 0.406 0.095 | 0.089 0.088 0.086
X264_s 8 4 0.330 0.334 0.346 0.393 0.095 | 0.094 0.093 0.088
xalancbmk_s | 4 2 0.608 0.618 0.621 0.676 0.056 0.056 0.056 0.053
xalancbmk_s | 8 2 0.450 0.464 0.468 0.519 0.067 | 0.066 0.065 0.062
xalancbmk_s 16 2 0.330 0.349 0.352 0.396 0.078 0.076 0.076 0.072
xalancbmk_s | 64 2 0.063 0.082 0.091 0.141 0.129 | 0.123 0.121 0.108

